Refine Your Search

Topic

Search Results

Standard

Airborne Chemicals in Aircraft Cabins

2021-06-22
CURRENT
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Origins of chemical airborne contaminants during routine operating and failure conditions. Exposure control measures, including design, maintenance, and worker training/education. This AIR does not deal with airflow requirements.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2021-01-12
CURRENT
AIR1266B
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

Aircraft Thermal Management System Engineering

2020-10-26
CURRENT
AIR5744
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint.
Standard

Environmental Systems Schematic Symbols

2020-05-20
CURRENT
ARP780C
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Environmental Control Systems for Rotorcraft

2020-05-12
CURRENT
ARP292D
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered.
Standard

The Control of Excess Humidity in Avionics Cooling

2020-05-12
CURRENT
ARP987B
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2019-04-11
CURRENT
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-10-17
WIP
AIR4766/1A
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-09-24
WIP
ARP89E
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-08-23
CURRENT
ARP89D
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-08-23
CURRENT
AIR4766/1
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2017-09-05
CURRENT
ARP4014A
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
Standard

Thermophysical Characteristics of Working Fluids and Heat Transfer Fluids

2017-05-19
CURRENT
AIR1168/10A
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
Standard

Environmental Control Systems Life Cycle Cost

2017-02-07
CURRENT
AIR1812B
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Environmental Systems Schematic Symbols

2015-10-16
HISTORICAL
ARP780B
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Cooling of Military Avionic Equipment

2015-10-16
CURRENT
AIR1277B
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed.
Standard

Aircraft Electrical Heating Systems

2011-10-17
CURRENT
AIR860B
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
X