Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of Microstructure on CFD Simulation of Water Removal in a PEM FC Channel

2024-04-09
2024-01-2181
Water removal from Proton Exchange Membrane (PEM) Fuel Cell (FC) mainly involves two phenomena: some of the emerging droplets will roll on the Gas Diffusion Layer (GDL), others may impact channel walls and start sliding along the airflow direction. This different behaviour is linked to the hydrophobic/hydrophilic nature of the surface the water is moving on. In this paper, the walls of the channel of a FC were characterized by applying optical techniques. The deposition of droplets on the channel wall led to an evaluation of the proper range for Contact Angle Hysteresis (CAH = 55° - 45°), and due to the high wettability of the surface, droplets dimension was defined with a dimensionless parameter B/H. Under high crossflow condition (15 m/s) a sliding behaviour was observed. The channel features determined through image processing were used as boundary conditions for a 2D CFD two phase simulation employing the Volume of Fluid (VOF) model to keep track of the fluids interface.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Vehicle Dynamics and ECU Remapping Requirements

2023-08-28
2023-24-0065
Converting spark ignition (SI) engines to H2 fueling is an attractive route for achieving zero carbon transportation and solving the legacy fleet problem in a future scenario in which electric powertrains will dominate. The current paper looks at a small size passenger car in terms of vehicle dynamics and electronic control unit (ECU) remapping requirements, in the hypothesis of using H2 as a gasoline replacement. One major issue with the use of H2 in port fuel injection (PFI) engines is that it causes reduced volumetric efficiency and thus low power. The vehicle considered for the study features turbocharging and therefore complete or partial recuperation of lost power is possible. Other specific requirements such as injection phasing were also under scrutiny, especially as PFI was hypothesized to maximize cost effectiveness. A 0D/1D model was used for simulating engine running characteristics as well as vehicle dynamics.
Technical Paper

Application of Metal Oxide Gas Sensors for the Detection of Fuel Contamination in ICEs Oil

2023-08-28
2023-24-0101
In modern internal combustion engines, oil represents a real component. It carries out the essential tasks: lubrication and heat dissipation. On one hand, it directly influences the vehicle performances and, on the other hand, it is subjected to an unavoidable dirtying and degradation process during operation. For these reasons, it requires a dedicated maintenance program which traditionally consists in a scheduled substitution without the analysis of its actual state. To this purpose, the current work aims to show the potential use of nanostructured metal oxides (MOX) gas sensors to develop a new online, on-board, non-invasive device for the oil monitoring. Indeed, they could analyze the oil vapors from the recirculation pipe directly in the engine head. For this analysis, two traditional engine oils have been considered and used in the same test bench.
Technical Paper

Modelling of a Hybrid Quadricycle (L6e vehicle) Equipped with Hydrogen Fueled ICE Range Extender and Performance Analysis on Stochastic Drive Cycles Generated from RDE Profile

2023-08-28
2023-24-0149
The last environmental regulations on passenger vehicles’ emissions harden constraints on designing powertrains. A promising solution consists in vehicle electrification leading to hybrid configurations: the tank-to-wheel pollutant emissions can be drastically reduced combining features of typical battery electric vehicles adding an Internal Combustion Engine (ICE) controlled as a Range Extender (REX). Furthermore, HC and CO/CO2 emissions can be avoided using green hydrogen as fuel for the ICE; moreover, in absence of a mechanical coupling between REX and wheels the best operating conditions in terms of maximum ICE efficiency may be easily achieved. In this work, a light quadricycle (EU L6e, classification) series hybrid vehicle with four in-wheel motors is studied for the application of a range extender system.
Technical Paper

Energy and Pollutants analysis of a Series HEV Equipped with a Hydrogen-Fueled SI Engine

2023-08-28
2023-24-0132
The growing concern about Greenhouse Gas (GHG) emissions led institutions to further reduce the limits on vehicle-related CO2 emissions. Therefore, car manufacturers are developing vehicles with low environmental impact, like Hybrid-Electric Vehicles (HEVs), which in the series architecture employ an Internal Combustion Engine (ICE) coupled with an electric generator for battery recharging, thus extending the range of a Battery Electric Vehicle (BEV). For this kind of application, small four-stroke Spark Ignition (SI) engines are preferred, as they are a proven and reliable solution to increase the driving range with very low environmental impact. In series hybrid-electric powertrains, the ICE is decoupled from the drive wheels, then it can operate in a steady-state high-efficiency working point, regardless of the power required by the mission profile. The benefits of lean combustion can be exploited to increase efficiency and reduce CO2 and NOx emissions.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of Port- vs Direct-Injection and Boosting Requirements

2023-08-28
2023-24-0074
Hydrogen is an energy vector with low environmental impact and will play a significant role in the future of transportation. Converting a spark ignition (SI) engine powered vehicle to H2 fueling has several challenges, but was overall found to be feasible with contained cost. Fuel delivery directly to the cylinder features numerous advantages and can successfully mitigate backfire, a major issue for H2 SI engines. Within this context, the present work investigated the specific fuel system requirements in port- (PFI) and direct-injection (DI) configurations. A 0D/1D model was used to simulate engine operating characteristics in several working conditions. As expected, the model predicted significant improvement of volumetric efficiency for DI compared to the PFI configuration. Boosting requirements were predicted to be at levels quite close to those for gasoline fueling.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Technical Paper

Model-Supported Design of a Range-Extended Electric Vehicle with a Hydrogen-Fueled Internal Combustion Engine

2022-09-16
2022-24-0008
Hybrid electric vehicles are a suitable solution for the transition from fossil fuels-based transportation to electric mobility. They have the benefits of zero-emissions operation when only the electric engine is used preventing the typical range anxiety of full-electric vehicles. Also, they can have a low battery pack capacity and weight thanks to the continuous recharge from the internal combustion engine that becomes the only responsible for exhaust emissions. A practical solution to limit the combustion engine emissions is represented by the range extender configuration, where the engine works at a fixed operating point with the highest efficiency serving uniquely as a battery charger. In the face of the current world situation and future changes, research for alternative energy sources is crucial. Hydrogen can be used as an alternative fuel for common internal combustion engines; moreover, it has the great advantage of high efficiency (about 44%).
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Rated Power and Injection Phasing Effects

2022-09-16
2022-24-0031
In the context of increasing efforts towards zero emissions transport, hydrogen represents a valid alternative to electric powertrains. Spark ignition (SI) engines are well suited for this alternative fuel and its specific application requires relatively minor changes with respect to added components. Limited range is one of the main issues with hydrogen as an energy source for transportation, due to its low energy density. The present study looked at the possibility of converting a small size passenger car powered by a turbocharged SI unit to hydrogen fueling. Taking the electric version of the vehicle as benchmark, the initial evaluation of the hydrogen SI alternative appears feasible with an additional gas container comparable in size to the gasoline tank. As a result, further investigation was aimed at actual engine operation in port fuel injection mode, with a focus on rated power and injection phasing effects.
Technical Paper

The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition

2022-09-16
2022-24-0037
Direct injection spark ignition engines represent an effective technology to achieve the goal of carbon dioxide emission reduction. Further reduction of the carbon footprint can be achieved by using carbon-neutral fuels. Oxygenated alcohols are well consolidated fuels for spark ignition engines providing also the advantages of knock resistance and low soot tendency production. Methanol and ethanol are possible candidates as alternative fuels to gasoline due to their similar properties. In this study a blend at 25 % v/v of ethanol in gasoline (E25) and a blend with 80% gasoline, 5 % v/v ethanol and 15% v/v of methanol (GEM) were tested. These blends were considered since E25 is already available at fuel pump in some countries. The GEM blend, instead, could represent a valid alternative in the next future. Experiments were carried out on a high performance, turbocharged 1.8 L direct injection spark ignition engine over the Worldwide Harmonized Light Vehicles Test Cycle.
Technical Paper

Pressure and Flow Field Effects on Arc Channel Characteristics for a J-type Spark Plug

2022-03-29
2022-01-0436
Lean operation of spark ignition engines is a promising strategy for increasing thermal efficiency and minimize emissions. Variability on the other hand is one of the main shortcomings in these conditions. In this context, the present study looks at the interaction between the spark produced by a J-type plug and the surrounding fluid flow. A combined experimental and numerical approach was implemented so as to provide insight into the phenomena related to the ignition process. A sweep of cross-flow velocity of air was performed on a dedicated test rig that allowed accurate control of the volumetric flow and pressure. This last parameter was varied from ambient to 10 bar, so as to investigate conditions closer to real-world engine applications. Optical diagnostics were applied for better characterization of the arc in different operating conditions. The spatial and temporal evolution of the arc was visualized with high-speed camera to estimate the length, width and stretching.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

1D Modeling of the Outwardly Opening Direct Injection for Internal Combustion Engines Operating with Gaseous and Liquid Fuels

2021-09-05
2021-24-0006
The in-cylinder direct injection of fuels can be a further step towards cleaner and more efficient internal combustion engines. However, the injector design and its characterization, both experimental and from numerical simulation require accurate diagnostics and efficient models. This work aims to simulate the complex behavior of the gaseous and liquid jets through an outwardly opening injector characterized by optical diagnostics using a one-dimensional model without using three dimensional models. The behavior of the jet from an outwardly opening injector changes according to the type of fuel. In the case of the gas, the experimental investigations put in evidence three main jet regions: 1) near-field region where the jet shows a complex gas-dynamic structure; 2) transition region characterized by intense mixing; 3) far-field region characterized by a fully developed subsonic turbulent jet.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
Technical Paper

Experimental and Numerical Investigation of a Lean SI Engine To Be Operated as Range Extender for Hybrid Powertrains

2021-09-05
2021-24-0005
In the last few years, concern about the environmental impact of vehicles has increased, considering the growth of the dangerous effects on health of noxious exhaust emissions. For this reason, car manufacturers are moving towards more efficient combustion systems for Spark Ignition (SI) engines, aiming to comply with the increasingly stringent regulation imposed by EU and other legislators. Engine operation with very lean air/fuel ratios has demonstrated to be a viable solution to this problem. Stable ultra-lean combustion can be obtained with a Pre-Chamber (PC) ignition system, installed in place of the conventional spark plug. The efficiency of this configuration in terms of performance and emissions is due to its combustion process, that starts in the PC and propagates in the main chamber in the form of multiple hot turbulent jets.
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Technical Paper

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

2019-10-07
2019-24-0233
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed. In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered.
X