Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Automated Park and Charge: Concept and Energy Demand Calculation

2024-07-02
2024-01-2988
In this paper we are presenting the concept of automated park and charge functions in different use scenarios. The main scenario is automated park and charge in production and the other use scenario is within automated valet parking in parking garages. The automated park and charge in production is developed within the scope of the publicly funded project E-Self. The central aim of the project is the development and integration of automated driving at the end-of-line in the production at Ford Motor Company's manufacturing plant in Cologne. The driving function thereby is mostly based upon automated valet driving with an infrastructure based perception and action planning. Especially for electric vehicles the state of charge of the battery is critical, since energy is needed for all testing and driving operations at end-of-line.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Technical Paper

Frequency Response Analysis of Fully Trimmed Models using Compressed Reduced Impedance Matrix Methodology

2024-06-12
2024-01-2947
As vibration and noise regulations become more stringent, numerical models need to incorporate more detailed damping treatments. Commercial frameworks, such as Nastran and Actran, allow the representation of trim components as frequency-dependent reduced impedance matrices (RIM) in frequency response analysis of fully trimmed models. The RIM is versatile enough to couple the trims to modal-based or physical components. If physical, the trim components are reduced on the physical coupling degrees of freedom (DOFs) for each connected interface. If modal, the RIMs are projected on the eigenmodes of the connected component. While a model size reduction is achieved compared to the original model, most numerical models possess an extensive number of interfaces DOFs, either modal or physical, leading to large dense RIM which triggers substantial memory and disk storage.
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

Sustainable Fuels for Long-Haul Truck Engines: a 1D-CFD Analysis

2024-06-12
2024-37-0027
Heavy duty truck engines are quite difficult to electrify, due to the large amount of energy required on-board, in order to achieve a range comparable to that of diesels. This paper considers a commercial 6-cylinder engine with a displacement of 12.8 L, developed in two different versions. As a standard diesel, the engine is able to deliver more than 420 kW at 1800 rpm, whereas in the CNG configuration the maximum power output is 330 kW at 1800 rpm. Maintaining the same combustion chamber design of the last version, a theoretical study is carried out in order to run the engine on Hydrogen, compressed at 700 bar. The study is based on GT-Power simulations, adopting a predictive combustion model, calibrated with experimental results. The study shows that the implementation of a combustion system running on lean mixtures of Hydrogen, permits to cancel the emissions of CO2, while maintaining the same power output of the CNG engine.
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Journal Article

Effect of Ethanol and Iso-Octane Blends on Isolated Low-Temperature Heat Release in a Spark Ignition Engine

2024-05-17
Abstract Low-temperature heat release (LTHR) is of interest for its potential to help control autoignition in advanced compression ignition (ACI) engines and mitigate knock in spark ignition (SI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high-temperature heat release (HTHR) event and, more recently, LTHR in isolation has been demonstrated in SI engines by appropriately curating the in-cylinder thermal state during compression and disabling the spark discharge. Ethanol is an increasingly common component of market fuel blends, owing to its renewable sources. In this work, the effect of adding ethanol to iso-octane (2,2,4-trimethylpentane) blends on their LTHR behavior is demonstrated. Tests were run on a motored single-cylinder engine elevated inlet air temperatures and pressures were adjusted to realize LTHR from blends of iso-octane and ethanol without entering the HTHR regime.
Event

Contact - 2025 Government Industry Meeting

2024-05-17
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
Event

Attend - Government/Industry Meeting

2024-05-17
The Government/Industry Meeting technical program is designed to provide an open forum to discuss the critical impacts that legislation has on vehicle design from R&D to customer acceptance.
Event

Contact - AeroTech®

2024-05-17
Contact the AeroTech team for any questions around exhibiting, sponsorship, event programming, and more.

2024-05-17
Event

Program - Government/Industry Meeting 2024

2024-05-17
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
X