Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Technical Paper

Real Time Energy Management Control Strategies for an Electrically Supercharged Gasoline Hybrid Vehicle

2020-04-14
2020-01-1009
The high level of electric power available on a Hybrid Electric Vehicle (HEV) enables the introduction of electrical auxiliaries in addition or in substitution to the ones currently available on a conventional powertrain. Among these auxiliaries, electric Superchargers (eSC) for the improvement of the vehicle performance or electrically heated catalysts for the reduction of the light-off time of the after-treatment may dramatically affect the Energy Management System (EMS) of an HEV. Moreover, since these devices are only fluid-dynamically, but not mechanically, linked to the powertrain, they are traditionally neglected in the optimization of the powersplit between internal combustion engine and electric machines by the EMS. The aim of the current work is the development of an EMS that is able to consider in real time the overall electric energy consumption of the entire powertrain.
Technical Paper

An Integrated Experimental and Numerical Methodology for Plug-In Hybrid Electric Vehicle 0D Modelling

2019-09-09
2019-24-0072
Governments worldwide are taking actions aiming to achieve a sustainable transportation system that can comprise of minimal pollutant and GHG emissions. Particular attention is given to the real-world emissions, i.e. to the emissions achieved in the real driving conditions, outside of a controlled testing environment. In this framework, interest in vehicle fleet electrification is rapidly growing, as it is seen as a way to simultaneously reduce pollutant and GHG emissions, while on the other hand OEMs are facing a significant increase in the number of tests which are needed to calibrate this new generation of electrified powertrains over a variety of different driving scenarios.
Technical Paper

Calculating Heavy-Duty Truck Energy and Fuel Consumption Using Correlation Formulas Derived From VECTO Simulations

2019-04-02
2019-01-1278
The Vehicle Energy Consumption calculation Tool (VECTO) is used in Europe for calculating standardised energy consumption and CO2 emissions from Heavy-Duty Trucks (HDTs) for certification purposes. The tool requires detailed vehicle technical specifications and a series of component efficiency maps, which are difficult to retrieve for those that are outside of the manufacturing industry. In the context of quantifying HDT CO2 emissions, the Joint Research Centre (JRC) of the European Commission received VECTO simulation data of the 2016 vehicle fleet from the vehicle manufacturers. In previous work, this simulation data has been normalised to compensate for differences and issues in the quality of the input data used to run the simulations. This work, which is a continuation of the previous exercise, focuses on the deeper meaning of the data received to understand the factors contributing to energy and fuel consumption.
Technical Paper

An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car

2018-09-10
2018-01-1659
Nowadays, the 48 V vehicle architecture seems to be the perfect bridge between the 12 V system and the costly High Voltage (HV) electrification towards the crucial goal of CO2 and pollutants emissions reduction in combination with enhanced performance. However, this approach leads to an increased complexity in the interaction between different sub-systems targeting the optimization of the Energy Management System (EMS). Therefore, it becomes essential to perform a preliminary hardware assessment, exploring the interactions between the different components and quantifying the cost vs benefit trade-off. To this purpose, an integrated experimental/numerical methodology has been adopted: a comprehensive map-based Hybrid Electric Vehicle (HEV) model has been built, allowing the simulation of a variety of hybrid architectures, including both HV and 48 V systems.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

2017-09-04
2017-24-0021
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Technical Paper

A Methodology for Modeling the Cat-Heating Transient Phase in a Turbocharged Direct Injection Spark Ignition Engine

2017-09-04
2017-24-0010
This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
Technical Paper

Numerical Simulation of the Warm-Up of a Passenger Car Diesel Engine Equipped with an Advanced Cooling System

2016-04-05
2016-01-0555
The target for future cooling systems is to control the fluid temperatures and flows through a demand oriented control of the engine cooling to minimize energy demand and to achieve comfort, emissions, or service life advantages. The scope of this work is to create a complete engine thermal model (including both cooling and lubrication circuits) able to reproduce engine warm up along the New European Driving Cycle in order to assess the impact of different thermal management concepts on fuel consumption. The engine cylinder structure was modeled through a finite element representation of cylinder liner, piston and head in order to simulate the cylinder heat exchange to coolant or oil flow circuits and to predict heat distribution during transient conditions. Heat exchanges with other components (EGR cooler, turbo cooler, oil cooler) were also taken into account.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
Technical Paper

Effects of Rapeseed and Jatropha Methyl Ester on Performance and Emissions of a Euro 5 Small Displacement Automotive Diesel Engine

2011-09-11
2011-24-0109
The effects of using neat and blended (30% vol.) biodiesel, obtained from Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The impact of biodiesel usage on engine performance at full load was analyzed for a specifically adjusted ECU calibration: the same torque levels measured under diesel operation could be obtained, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits. In addition, the effects of biodiesel blends on brake-specific fuel consumption and on engine-out exhaust emissions (CO₂, CO, HC, NOx and smoke) were also evaluated at 6 different part load operating conditions, representative of the New European Driving Cycle. Emissions were also measured at the DPF outlet, thus providing information about after-treatment devices efficiencies with biodiesel.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Journal Article

The Effects of Neat Biodiesel Usage on Performance and Exhaust Emissions from a Small Displacement Passenger Car Diesel Engine

2010-05-05
2010-01-1515
The effects of using neat FAME (Fatty Acid Methyl Ester) in a modern small displacement passenger car diesel engine have been evaluated in this paper. In particular the effects on engine performance at full load with standard (i.e., without any special tuning) ECU calibration were analyzed, highlighting some issues in the low end torque due to the lower exhaust gas temperatures at the turbine inlet, which caused a remarkable decrease of the available boost, with a substantial decrease of the engine torque output, far beyond the expected engine derating due to the lower LHV of the fuel. However, further tests carried out after ECU recalibration, showed that the same torque levels measured under diesel operation can be obtained with neat biodiesel too, thus highlighting the potential for maintaining the same level of performance.
Technical Paper

Injection Strategies Tuning for the Use of Bio-Derived Fuels in a Common Rail HSDI Diesel Engine

2003-03-03
2003-01-0768
The potentialities in terms of engine performance and emissions reduction of pure biodiesel were examined on a Common Rail HSDI Diesel engine, trying to define a proper tuning of the injection strategies to bio-fuel characteristics. An experimental investigation was therefore carried out on a typical European passenger car Diesel engine, fuelled with a soybean oil derived biodiesel. A standard European diesel fuel was also used as a reference. In particular, the effects of an equal relative air/fuel ratio at full load condition were analysed; further, a sensitivity study on the outcome of the pilot injection timing and duration at part load on engine emissions was performed. Potentialities in recovering the performance gap between fossil fuel and biodiesel and in reducing NOx specific emissions, affecting only to a limited extent the biodiesel emission benefit in terms of CO, HC and FSN, were highlighted.
Technical Paper

Common Rail HSDI Diesel Engine Combustion and Emissions with Fossil / Bio-Derived Fuel Blends

2002-03-04
2002-01-0865
In order to evaluate the potentialities of bioderived diesel fuels, the effect of fueling a 1.9 l displacement HSDI automotive Diesel engine with biodiesel and fossil/biodiesel blend on its emission and combustion characteristics has been investigated. The fuels tested were a typical European diesel, a 50% biodiesel blend in the reference diesel, and a 100% biodiesel, obtained by mixing rape seed methyl ester (RME) and recycled cooking oil (CME). Steady state tests were performed at two different engine speeds (2500 and 4000 rpm), and for a wide range of loads, in order to evaluate the behavior of the fuels under a large number of operating conditions. Engine performance and exhaust emissions were analyzed, along with the combustion process in terms of heat release analysis. Experimental evidences showed appreciably lower CO and HC specific emissions and a substantial increase in NOx levels. A significant reduction of smoke emissions was also obtained.
Technical Paper

The Effect of Unleaded Gasoline Formulation on Antiknock Performance

1994-10-01
941862
The knock behavior of two groups of unleaded gasolines, each of which includes three fuels with different chemical compositions but comparable standard octane numbers, has been analyzed using a mass-produced engine. The aim of the work was to point out possible inconsistencies between the standard octane numbers of the fuels and their knock behavior in mass-produced engines. The fuels of the first group had R.O.N.s and M.O.N.s very close to the minimum values required by European Community regulations (95 and 85, respectively), whereas the fuels of the second group had higher R.O.N.s and M.O.N.s (about 100 and 87.5, respectively). One of the tested fuels in the first group was a typical European unleaded gasoline, the other gasolines had higher olefin or aromatic contents. An increase of the aromatic content has not shown appreciable differences between the expected knock behavior of the fuel from its standard octane numbers, and its performance on the mass-produced engine.
X