Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

2013-04-08
2013-01-0920
For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
Technical Paper

Design Optimization of an Emissions Sample Probe Using a 3D Computational Fluid Dynamics Tool

2013-04-08
2013-01-1571
Emissions sample probes are widely used in engine and vehicle emissions development testing. Tailpipe bag summary data is used for certification, but the time-resolved (or modal) emissions data at various points along the exhaust system is extremely important in the emission control technology development process. Exhaust gas samples need to be collected at various locations along the exhaust aftertreatment system. Typically, a tube with a small diameter is inserted inside the exhaust pipe to avoid any significant effect on flow distribution. The emissions test equipment draws a gas sample from the exhaust stream at a constant volumetric flow rate (typically around 10 SLPM). The sample probe tube delivers exhaust gas from the exhaust pipe to emissions test equipment through multiple holes on the surface of tube. There can be multiple rows of holes at different axial planes along the length of the sample probe as well as multiple holes on a given axial plane of the sample probe.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion

2010-04-12
2010-01-0340
This study explores an Adaptive Injection Strategy (AIS) that employs multiple injections at both low and high pressures to reduce spray-wall impingement, control combustion phasing, and limit pressure rise rates in a Premixed Compression Ignition (PCI) engine. Previous computational studies have shown that reducing the injection pressure of early injections can prevent spray-wall impingement caused by long liquid penetration lengths. This research focuses on understanding the performance and emissions benefits of low and high pressure split injections through experimental parametric sweeps of a 0.48 L single-cylinder test engine operating at 2000 rev/min and 5.5 bar nominal IMEP. This study examines the effects of 2nd injection pressure, EGR, swirl ratio, and 1st and 2nd injection timing, for both single heat release and two-peak high temperature heat release cases. In order to investigate the AIS concept experimentally, a Variable Injection Pressure (VIP) system was developed.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

Development of a New Light Stratified-Charge DISI Combustion System for a Family of Engines With Upfront CFD Coupling With Thermal and Optical Engine Experiments

2004-03-08
2004-01-0545
A new Light Stratified-Charge Direct Injection (LSC DI) spark ignition combustion system concept was developed at Ford. One of the new features of the LSC DI concept is to use a ‘light’ stratified-charge operation window ranging from the idle operation to low speed and low load. A dual independent variable cam timing (DiVCT) mechanism is used to increase the internal dilution for emissions control and to improve engine thermal efficiency. The LSC DI concept allows a large relaxation in the requirement for the lean after-treatment system, but still enables significant fuel economy gains over the PFI base design, delivering high technology value to the customer. In addition, the reduced stratified-charge window permits a simple, shallow piston bowl design that not only benefits engine wide-open throttle performance, but also reduces design compromises due to compression ratio, DiVCT range and piston bowl shape constraints.
Technical Paper

CFD Modeling of a Vortex Induced Stratification Combustion (VISC) System

2004-03-08
2004-01-0550
This paper describes the CFD modeling work conducted for the development and research of a Vortex Induced Stratification Combustion (VISC) system that demonstrated superior fuel economy benefits. The Ford in-house CFD code and simulation methodology were employed. In the VISC concept a vortex forms on the outside of the wide cone angle spray and transports fuel vapor from the spray to the spark plug gap. A spray model for an outward-opening pintle injector used in the engine was developed, tested, and implemented in the code. Modeling proved to be effective for design optimization and analysis. The CFD simulations revealed important physical phenomena associated with the spray-guided combustion system mixing preparation.
Technical Paper

Premixed Diesel Combustion Analysis in a Heavy-Duty Diesel Engine

2003-03-03
2003-01-0341
Optimizations were performed on a Heavy-Duty diesel engine equipped with a conventional electronic unit injector in order to minimize fuel consumption, and emissions of NOx and particulate matter. A low speed light load case and a high speed light load case were optimized with these considerations in mind. Exhaustive parametric studies were performed in order to find sets of operating conditions that resulted in low emissions and high fuel economy. It was found for the low speed light load case (Mode 2, 25% load and 821 rev/min) that low emissions operating conditions existed at either very early or very late start-of-injection timings and high EGR (PM = 0.018 g/kW-hr, NOx + HC = 1.493 g/kW-hr with SOI = -21 degrees ATDC, 48% EGR; or 0.085 g/kW-hr PM, 1.02 g/kW-hr NOx with SOI = 4 degrees ATDC, 39% EGR).
X