Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Measurement of Sound Speed in DME in a Wide Range of Pressure and Temperature Including the Critical Point

2016-10-17
2016-01-2258
Dimethyl ether (DME) is a promising alternative fuel for compression ignition (CI) engines. DME features good auto ignition characteristics and soot-free combustion. In order to develop an injection system suitable for DME, it is necessary to understand its fuel properties. Sound speed is an important fuel property that affects the injection characteristics. However, the measurement data under high-pressures corresponding to those in fuel injection systems are lacking. The critical temperature of DME is lower than that of diesel fuel, and is close to the injection condition. It is important to understand the behavior of the sound speed around the critical point, since the sound speed at critical point is extremely low. In this study, sound speed in DME in a wide pressure and temperature range of 1 MPa to 80 MPa, 298.15 K to 413.15 K, including the vicinity of the critical point, was measured. The sound speed in DME decreases as either the pressure falls or the temperature rises.
Journal Article

High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions

2015-09-01
2015-01-1927
Dimethyl Ether (DME) is one of the major candidates for the alternative fuel for compression ignition (CI) engines. However, DME spray combustion characteristics are not well understood. There is no spray model validated against spray experiments at high-temperature and high-pressure relevant to combustion chambers of engines. DME has a lower viscosity and lower volumetric modulus of elasticity. It is difficult to increase injection pressure. The injection pressure remains low at 60 MPa even in the latest DME engine. To improve engine performance and reduce emissions from DME engines, establishing the DME spray model applicable to numerical engine simulation is required. In this study, high-speed observation of DME sprays at injection pressures up to 120 MPa with a latest common rail DME injection system was conducted in a constant volume combustion vessel, under ambient temperature and pressure of 6 MPa-920 K.
Journal Article

Ignition Characteristics of 2,5-Dimethylfuran Compared with Gasoline and Ethanol

2015-09-01
2015-01-1806
2,5-dimethylfuran (DMF) and 2-methylfuran (MF) have attracted attention as new biofuels. To utilize furans as alternative fuels, fundamental studies on the combustion characteristics are required. In this study, the ignition delay times of DMF were measured using a rapid compression machine and compared with those of gasoline and ethanol. To investigate the effect of the addition of DMF to gasoline, the ignition delay times of DMF-gasoline surrogate fuel blends were also measured. The ignition delay times of DMF were longer than those of gasoline and shorter than those of ethanol. The simulation results using the DMF kinetic model were in reasonable agreement with those of the experiments.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

Numerical Analysis of Carbon Monoxide Formation in DME Combustion

2011-11-08
2011-32-0632
Dimethyl ether (DME) is an oxygenated fuel with the molecular formula CH₃OCH₃, economically produced from various energy sources, such as natural gas, coal and biomass. It has gained prominence as a substitute for diesel fuel in Japan and in other Asian countries, from the viewpoint of both energy diversification and environmental protection. The greatest advantage of DME is that it emits practically no particulate matter when used in compression ignition (CI) engine. However, one of the drawbacks of DME CI engine is the increase carbon monoxide (CO) emission in high-load and high exhaust gas circulation (EGR) regime. In this study, we have investigated the CO formation characteristics of DME CI combustion based on chemical kinetics.
Technical Paper

Methodology of Lubricity Evaluation for DME Fuel based on HFRR

2011-11-08
2011-32-0651
The methodology of lubricity evaluation for DME fuel was established by special modified HFRR (High-Frequency Reciprocating Rig) such as Multi-Pressure/Temperature HFRR (MPT-HFRR). The obtained results were summarized as follows: The HFRR method is adaptable with DME fuel. There is no effect of the test pressure (up to 1.8 MPa) and the test temperature (up to 100°C) of MPT-HFRR on wear scar diameter. The results with MPT-HFRR can be applied at the sliding parts of the injection needle and the fuel supply pump's plungers which are secured lubricity by the boundary lubrication mode mainly and the mixed lubrication mode partially. Using the fatty-acid-based lubricity improver in amounts of approximately 100 ppm, the lubricity of DME, which has a lack of self-lubricity, is ensured as same as the diesel fuel equivalent level. There is a big deviation of measured wear scar diameter when the LI concentration is not enough.
Technical Paper

Experimental and Numerical Analysis of High Pressure DME Spray

2010-04-12
2010-01-0880
DME has lower energy content per unit volume than that of light oil (typical petroleum based diesel fuel). Roughly 1.8 times the quantity of DME is required to obtain equivalent content of light oil. DME also exhibits higher compressibility and much lower viscosity than light oil, so high pressure injection is not easy. Currently, DME engines have utilized a larger injection volume by enlarging the nozzle diameter with a relatively low injection pressure up to 60MPa. In order to obtain higher performance in future DME engines, high pressure fuel injection is considered essential, however the high pressure DME spray characteristics have not yet been understood. In this research, DME spray characteristics of high injection pressure up to 140MPa were examined using a constant volume vessel under engine-like temperature/pressure conditions.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Fuel Properties and Engine Performance of Dimethyl Ether-Blended Biodiesel Fuels

2007-07-23
2007-01-2016
One way to reduce CO2 in the atmosphere is to use biodiesel fuel (BDF) [1]. BDF has the advantage of low smoke combustion, since its molecules contain oxygen. Meanwhile, BDF has the drawbacks of high viscosity and a high pour point that make it difficult to use at low temperatures. Dimethyl ether (DME) can be made from biomass, as well as from natural gas or coal; therefore, it is regarded as one of the biomass fuels. DME has low viscosity and a low boiling point, and smoke-free combustion can be obtained, since it has no carbon-carbon bond [2]. On the other hand, it has the disadvantage of low lubricity due to its low viscosity. When these fuels are blended together, the weaknesses of the fuels can be overcome. The objective of this research is to show that blending these two fuels is an effective way of bringing biomass-derived fuels into practical use.
Technical Paper

Evaluation of Medium Duty DME Truck Performance -Field Test Results and PM Characteristics-

2007-01-23
2007-01-0032
The performance of a medium duty DME truck was evaluated by field tests and engine bench tests. The DME vehicle was given a public license plate on October 2004, after which running tests were continued on public roads and a test course. The DME vehicle could run the whole distance, about 500 km, without refueling. The average diesel equivalent fuel consumption of the fully loaded DME truck was 5.75 km/l, running at 80 km/h on public highways. Remedying several malfunctions that occurred in the power-train subsystems enhanced the vehicle performance and operation. The DME vehicle accumulated 13,000 km as of August, 2006 with no observed durability trouble of the fuel injection pump. Disassembly and inspection of the fuel injectors after 7,700 km operation revealed a few differences in the nozzle tip and the needle compared to diesel fuel operation. However, the injectors were used again after cleanup.
Technical Paper

Studies of Fuel Properties and Oxidation Stability of Biodiesel Fuel

2007-01-23
2007-01-0073
Biodiesel fuel has attracted much attention as a carbon neutral fuel because it is made from vegetable oil. Especially in Southeast Asia, there are numerous biofuel resources, such as palm oil and coconut oil, and it is desirable to utilize these for CO2 reduction. In this paper, we evaluate the properties of biodiesel fuel and biodiesel blended diesel oil. The low temperature performance of palm oil methyl ester (PME) is poor and it affects low temperature performance, even if the PME blending rate is low. The oxidation stability is a very important property of biodiesel fuel because degraded biodiesel fuel produces organic acids and polymeric substances. PME contains mainly saturated fatty acids methyl esters, so the oxidation stability is better than other fats and oils. When containing antioxidants such as beta carotene, biodiesel's oxidation stability is improved.
Technical Paper

Research and Development of a Medium Duty DME Truck

2005-05-11
2005-01-2194
Dimethyl ether (DME) has been attracting notable attention as a clean alternative fuel for diesel engines. The authors developed a medium duty DME truck, and investigated aspects of vehicle performance such as engine power, exhaust characteristics, fuel consumption, noise, in-vehicle systems, and so on. Results indicated that higher engine torque and power could be achieved with DME compared to diesel fuel operation of the base engine at any engine speed. Results also showed that emissions decreased dramatically, to 27% for NOx, 74% for HC, 95% for CO and 94% for PM (Particulate Matter) compared to maximum allowed Japanese 2003 emission regulations. The operating noise of the DME vehicle was slightly lower than the base vehicle with diesel fuel, because the combustion noise with DME was decreased compared to with diesel fuel operation. The DME vehicle was given a public license plate in October 2004, after which running test continued on public roads and on a test course.
Technical Paper

Measurement of Trace Levels of Harmful Substances Emitted from a DME DI Diesel Engine

2005-05-11
2005-01-2202
In this report, trace levels of harmful substances, such as formaldehyde, acetaldehyde, SO2, benzene and so on, emitted from a DME fueled direct injection (DI) compression ignition (CI) engine were measured using a Fourier Transform Infrared (FTIR) emission analyzer. Results showed that the NO portion of NOx emissions with DME exceeded diesel fuel operation levels. DME fueling caused greater amounts of water than with diesel fuel operation. DME fueling was also associated with higher formaldehyde emissions than with diesel fuel operation. However, using an oxidation catalyst, formaldehyde could be decreased to a negligible level.
Technical Paper

Ignition Mechanisms of HCCI Combustion Process Fueled With Methane/DME Composite Fuel

2005-04-11
2005-01-0182
Homogeneous charge compression ignition (HCCI) combustion of methane was performed using dimethyl ether (DME) as an ignition improver. The ignition mechanisms of the methane/DME/air HCCI process were investigated on the basis of the chemical kinetics. The engine test was also conducted to verify the calculation results, and to determine the operation range. Analysis of the results showed that DME was an excellent ignition improver for methane, having two functions of temperature rise and OH radical supply. It was also shown that the operation range was extended to an overall equivalence ratio of 0.54 without knocking, by controlling DME quantity.
Technical Paper

Lubricity of Liquefied Gas Assessment of Multi-Pressure/Temperature High-Frequency Reciprocating Rig (MPT-HFRR) -DME Fuel for Diesel

2004-06-08
2004-01-1865
In this study, a MPT-HFRR (Multi-Pressure/Temperature High-Frequency Reciprocating Rig) was manufactured based on a diesel fuel lubricity test apparatus. The MPT-HFRR was designed to be used for conventional test methods as well as for liquefied gas fuel tests. Lubricity tests performed on a calibration standard sample under both atmospheric pressure and high pressure produced essentially constant values, so it was determined that this apparatus could be used for assessing the lubricity of fuel. Using this apparatus, the improvement of lubricity due to the addition of a DME (Dimethyl Ether) fuel additive was investigated. It was found that when 50ppm or more of a fatty acid lubricity improver was added, the wear scar diameter converged to 400μm or less, and a value close to the measured result for Diesel fuel was obtained. The lubricity obtained was considered to be generally satisfactory.
Technical Paper

Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME

2004-06-08
2004-01-1863
The engine performance and exhaust characteristics of the DME-powered diesel engine with an injection system developed for DME were investigated. The injection pump is an inline type that can inject double amount of DME fuel compared to the base injection pump because the calorific value of DME is about half lower than that of diesel fuel. The effect of injection timing on engine performances such as thermal efficiency, engine torque, and exhaust characteristics were investigated. Maximum torque and power with DME could be achieved the same or greater level compared to diesel fuel operation. Considering over all engine performances, the best dynamic injection timings without EGR were -3, -3, -6 and -9 deg. ATDC in 1120, 1680, 2240 and 2800 rpm engine speeds respectively in this experiment.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Performance and Emissions of a DI diesel engine Operated with LPG and Cetane Enhancing additives

2003-05-19
2003-01-1920
Experiments were conducted to operate a direct injection (DI) diesel engine by using Liquefied Petroleum Gas (LPG) as a main fuel. Aliphatic Hydrocarbon (AH), cetane enhancing additive and lubricating additive were also added to the LPG so that smooth operation was achieved with a wide range of engine loads. Since the lubricity of LPG is lower than the diesel fuel therefore lubricating additive was employed to enhance the lubricity of LPG blended fuel. Furthermore, prototype LPG diesel truck was developed in this work, and the mileage reached about 70,000 km without any major failure. Prototype truck has good starting, good drive-off, acceleration and braking characteristics.
X