Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

AAM/AIAM Fleet Test Program: Analysis and Comments

2003-10-27
2003-01-3287
In July 2002, the Alliance of Automobile Manufacturers, the Association of International Automobile Manufacturers and the Canadian Vehicle Manufacturers Association released the results of a 6-year, two-part vehicle fleet test program to determine the effects of methyl-cyclopentadienyl manganese tricarbonyl (MMT®*) on vehicles equipped with state of the art emission control systems. Analysis of the data reports from this study shows that all of the vehicles met applicable emission standards, even though the fleet accumulated mileage under very severe conditions that accelerate degradation of vehicle emission control systems in excess of that expected from actual vehicle mileage. The study also demonstrated that gasoline-containing MMT had no adverse impact on vehicular emission control equipment.
Technical Paper

A Peer-Reviewed Critical Analysis of SAE Paper 2002-01-2894 “The Impact of MMT Gasoline Additive on Exhaust Emissions and Fuel Economy of Low Emission Vehicles (LEV)”

2002-10-21
2002-01-2903
SAE Paper 2002-01-2894 entitled, “The Impact of MMT Gasoline Additive on Exhaust Emissions and Fuel Economy of Low Emission Vehicles (LEV)” presents discussion and conclusions concerning the emissions from vehicles that accumulated mileage on gasoline with and without the fuel additive, methylcyclopentadienyl manganese tricarbonyl (or MMT®). Although the authors of the paper express concern about use of MMT®, the data on which the authors rely are consistent with the results and conclusions from prior evaluations of MMT® which have found that MMT® is compatible with effective emission control system operation (1,2,3). All vehicles tested in the study met the emission standards for all pollutants that apply to the test vehicles in-use and analysis of the data show MMT® had no effect on fuel economy.
Technical Paper

API CI-4: The First Oil Category for Diesel Engines Using Cooled Exhaust Gas Recirculation

2002-05-06
2002-01-1673
This oil category was driven by two new cooled exhaust gas recirculation (EGR) engine tests operating with 15% EGR, with used oil soot levels at the end of the test ranging from 6 to 9%. These tests are the Mack T-10 and Cummins M11 EGR, which address ring, cylinder liner, bearing, and valve train wear; filter plugging, and sludge. In addition to these two new EGR tests, there is a Caterpillar single-cylinder test without EGR which measures piston deposits and oil consumption control using an articulated piston. This test is called the Caterpillar 1R and is included in the existing Global DHD-1 specification. In total, the API CI-4 category includes eight fired-engine tests and seven bench tests covering all the engine oil parameters. The new bench tests include a seal compatibility test for fresh oils and a low temperature pumpability test for used oils containing 5% soot. This paper provides a review of the all the tests, matrix results, and limits for this new oil category.
Technical Paper

The Effect of Fuel Composition and Additive Content on Injector Deposits and Performance of an Air-Assisted Direct Injection Spark Ignition (DISI) Research Engine

2001-05-07
2001-01-2030
This paper presents the findings of some fundamental characterisation of the deposits that form on the injectors of an air-assisted DISI automotive engine, including the effect of these deposits on engine performance when operated in different combustion modes, with varying fuel composition and additive content. A root cause analysis was undertaken, including an assessment of injector temperature and deposit chemistry. Fuels from a matrix designed around the European year 2000 gasoline specifications for T90, olefin and aromatic levels were used to study the effect of fuel composition on deposit formation. Two commercial gasoline detergent additives, of different chemistries, were used to investigate the impact on deposit formation. The results of the fuels study and deposit analysis are consistent with published theories concerning fuel composition impact on combustion chamber deposit (CCD).
Technical Paper

Diesel-Spray Ignition and Premixed-Burn Behavior

2000-03-06
2000-01-0940
The temporal and spatial evolution of the ignition and premixed-burn phases of a direct-injection (DI) diesel spray were investigated under quiescent conditions. The diagnostics used included temporally resolved measurements of natural light emission and pressure, and spatially resolved images of natural light emission. Temporally resolved natural light emission measurements were made with a photo-multiplier tube and a photodiode, while the images were acquired with an intensified CCD camera. The experiments were conducted in an optically accessible, constant-volume combustion vessel over a range of ambient gas temperatures and densities: 800-1100 K and 7.3-45.0 kg/m3. The fuel used was a ternary blend of single-component fuels representative of diesel fuel with a cetane number of 45. The fuel was injected with a common-rail injector at high pressure (140 MPa). The results provide new information on the evolution of the two-stage ignition/premixed-burn phases of DI diesel sprays.
Technical Paper

The Effect of Fuel Composition and Engine Operating Parameters on Injector Deposits in a High-Pressure Direct Injection Gasoline (DIG) Research Engine

1999-10-25
1999-01-3690
The effects of fuel composition and engine operating parameters on high-pressure, direct injection gasoline (DIG) injector plugging and deposit formation have been studied. The engine used was a conventional dual-sparkplug, 2.2-liter Nissan engine modified for direct injection using one of the spark plug holes. The engine was run under 20% rich conditions to accelerate deposit formation. A ten-fuel test matrix was designed around T90, sulfur level, and olefin levels indicated in the European gasoline specifications for year 2000. The gasolines, containing no detergents, were formulated using refinery stream blends to match the specified targets. Injector flow loss was monitored by fuel flow to the engine and monitoring oxygen sensors on each of the four cylinders. The impact of fuel composition on deposit formation and injector plugging is discussed. Injector flow loss was strongly influenced by injector tip temperature.
Technical Paper

Evaluation of On-Board Diagnostic Systems and the Impact of Gasoline Containing MMT

1997-10-01
972849
The Clean Air Act of 1990 requires on-board diagnostics (OED) capabilities on all new vehicles. These diagnostic systems monitor the performance of engine and emission system components and inform the vehicle operator when component or system degradation could significantly impact emissions. Acceptable operation of the monitor requires proper treatment of system variables. Fuel composition is one of many possible variables that must be considered for monitoring components directly in the exhaust stream. Recently, the octane enhancing, emissions reducing additive methylcyclopentadienyl manganese tricarbonyl (MMT) was reintroduced into unleaded gasoline in the U.S. Prior to reintroduction, the additive underwent extensive testing to demonstrate that use of MMT does not adversely affect vehicle emissions or the operation of emission systems such as OBD. However, questions have been raised about the influence of the additive on OBD systems.
Technical Paper

THE EFFECT OF MANGANESE OXIDES ON OBD-II CATALYTIC CONVERTER MONITORING

1994-10-01
942056
Extensive vehicle fleet testing has demonstrated that use of MMT can reduce net tailpipe out emissions. The use of fuel containing the octane-enhancing, emission-reducing fuel additive leads to manganese oxide deposits in the vehicle exhaust system. Studies of the physical and chemical effects of manganese oxide deposits on the performance of catalytic converters conclusively demonstrated that MMT does not adversely affect catalytic converters and, in fact, protected the converters from phosphorus and zinc. Despite the overwhelming evidence that MMT is compatible with catalytic converters and vehicle emission control systems, concerns have recently been raised about the effect of manganese oxides on OBD-II catalytic converter monitoring.
Technical Paper

Emissions, Fuel Economy, and Durability of Lean Burn Systems

1976-02-01
760227
Several makes and models of cars were modified for lean-burn operation using the Turbulent Flow Manifold (TFM), a unique intake manifold that provides improved preparation and distribution of the fuel-air mixture. Operation of the TFM is described, and exhaust emissions and fuel economy data are presented for the various cars. Exhaust port liners and thermal reactors were shown to be effective devices for reducing emissions from the basic lean-burn system. One car equipped with the TFM, port liners, and reactors was operated for 50,000 miles on an EPA-type durability test and had emissions well below the 1975 standards for California. Emissions, fuel economy, and durability data are presented.
Technical Paper

ARE OCTANE NUMBERS AND HYDROCARBON TYPE ENOUGH?

1960-01-01
600140
This paper presents the results of an investigation cooperatively undertaken by Esso Research and Engineering Company and Ethyl Corporation to determine whether the hydrocarbon-type effect observed in road antiknock studies of gasolines is independent of other fuel properties over and above laboratory octane numbers. For this study, 51 finished gasolines were carefully blended from 57 base stock components to provide controlled levels of those major fuel properties which affect road performance. The controlled properties were Research octane number, sensitivity (RON minus MON), ratio of aromatics to olefins, tetraethyllead content, octane-number distribution in the fuel's boiling range, boiling-range location of the unsaturated hydrocarbons, and sulfur content. A unique feature of the blending scheme was the formulation of blend pairs, in which all but one of the major fuel properties were essentially equal.
X