Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Test Vector Development for Verification and Validation of Heavy-Duty Autonomous Vehicle Operations

2024-04-09
2024-01-1973
The current focus in the ongoing development of autonomous driving systems (ADS) for heavy duty vehicles is that of vehicle operational safety. To this end, developers and researchers alike are working towards a complete understanding of the operating environments and conditions that autonomous vehicles are subject to during their mission. This understanding is critical to the testing and validation phases of the development of autonomous vehicles and allows for the identification of both the nominal and edge case scenarios encountered by these systems. Previous work by the authors saw the development of a comprehensive scenario generation framework to identify an operating domain specification (ODS), or external and internal conditions an autonomous driving system can expect to encounter on its mission to form critical scenario groups for autonomous vehicle testing and validating using statistical patterns, clustering, and correlation.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Assessing Powertrain Technology Performance and Cost Signposts for Electrified Heavy Duty Commercial Freight Vehicles

2024-04-09
2024-01-2032
Adoption of fuel cell electric vehicles (FCEV) or battery electric vehicles (BEV) in heavy-duty (HD) commercial freight transportation is hampered by difficult technoeconomic obstacles. To enable widespread deployment of electrified powertrains, fleet and operational logistics need high uptime and parity with diesel system productivity/total cost of ownership (TCO), while meeting safety compliance. Due to a mix of comparatively high powerplant and energy storage costs, high energy costs (more so for FCEV), greater weight (more so for BEV), slow refueling / recharging durations, and limited supporting infrastructure, FCEV and BEV powertrains have not seen significant uptake in the HD freight transport market. The use of dynamic wireless power transfer (DWPT) systems, consisting of inductive electrical coils on the vehicle and power source transmitting coils embedded in the roadways, may address several of these challenges.
Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
Technical Paper

Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate

2024-04-09
2024-01-2085
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL).
Technical Paper

Consumer-Oriented Energy Use and Range Metrics for Battery Electric Vehicles

2024-04-09
2024-01-2596
The present study was motivated by a need to expand information for consumers offered through the FuelEconomy.Gov website. To that end, a power-based modeling approach has been used to examine the effect of steady-speed driving on estimated range for model year 2020 – 2023 battery electric vehicles (BEVs). This approach allowed rapid study of a broader range of BEV models than could be accomplished through vehicle tests. Publicly accessible certification test results and other data were used to perform a regression between cycle-average tractive power requirements and the resulting electrical power. This regression enabled estimation of electric power and energy use over a range of steady highway speeds. These analyses in turn allowed projection of vehicle range at differing speeds. The projections agree within 6% with available 65 MPH manufacturer test data.
Technical Paper

Exploring Class 8 Long-Haul Truck Electrification: Key Technology Evaluation and Potential Challenges

2024-04-09
2024-01-2812
The phenomena of global warming and climate change are encouraging more and more countries, local communities, and companies to establish carbon neutrality targets, which has very significant implications for the US trucking industry. Truck electrification helps fleets to achieve zero tailpipe emissions and macro-scale decarbonization while allowing continued business growth in response to the rapid expansion of e-commerce and shipping related to increased globalization. This paper presents an analysis of Class 8 long-haul truck electrification using a commercial vehicle electrification evaluation tool and Fleet DNA drive data. The study provides new insight into the impacts of streamlined chassis, battery energy density, and superfast charging on battery capacity needs as well as implications for payload, energy consumption, and greenhouse gas emissions for electric long-haul trucks. The study also identifies a pathway for achieving optimal long-haul truck electrification.
Technical Paper

On Road vs. Off Road Low Load Cycle Comparison

2024-04-09
2024-01-2134
Reducing criteria pollutants while reducing greenhouse gases is an active area of research for commercial on-road vehicles as well as for off-road machines. The heavy duty on-road sector has moved to reducing NOx by 82.5% compared to 2010 regulations while increasing the engine useful life from 435,000 to 650,000 miles by 2027 in the United States (US). An additional certification cycle, the Low Load Cycle (LLC), has been added focusing on part load operation having tight NOx emissions levels. In addition to NOx, the total CO2 emissions from the vehicle will also be reduced for various model years. The off-road market is following with a 90% NOx reduction target compared to Tier 4 Final for 130-560 kW engines along with greenhouse gas targets that are still being established. The off-road market will also need to certify with a Low Load Application Cycle (LLAC), a version of which was proposed for evaluation in 2021.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Engine Operating Conditions, Fuel Property Effects, and Associated Fuel–Wall Interaction Dependencies of Stochastic Preignition

2023-10-31
2023-01-1615
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points.
Technical Paper

Capturing Combustion Chemistry of Carbon-Neutral Transportation Fuels with a Library of Model Fuels

2023-09-29
2023-32-0001
Carbon-neutral (CN) fuels will be part of the solution to reducing global warming effects of the transportation sector, along with electrification. CN fuels such as hydrogen, ammonia, biofuels, and e-fuels can play a primary role in some segments (aviation, shipping, heavy-duty road vehicles) and a secondary role in others (light-duty road vehicles). The composition and properties of these fuels vary substantially from existing fossil fuels. Fuel effects on performance and emissions are complex, especially when these fuels are blended with fossil fuels. Predictively modeling the combustion of these fuels in engine and combustor CFD simulations requires accurate representation of the fuel blends. We discuss a methodology for matching the targeted fuel properties of specific CN fuels, using a blend of surrogate fuel components, to form a fuel model that can accurately capture fuel effects in an engine simulation.
Technical Paper

IMPACT: Numerical Study of Aerodynamics of an Iced Forward-Swept Tail with Leading Edge Extension

2023-06-15
2023-01-1371
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing.
Technical Paper

Icing Simulation Results Using Lagrangian Particle Tracking in Ansys Fluent Icing

2023-06-15
2023-01-1478
This paper introduces the Lagrangian particle tracking technology readily available in Ansys Fluent in the in-flight icing simulation workflow, which normally uses the Eulerian approach for droplet flows. The Lagrangian solver is incorporated in the Fluent Icing workspace which is to become the next-gen in-flight icing simulation tool provided by Ansys. Lagrangian tracking will eventually be used for SLD and ice crystal rebound and re-impingement calculations in the Ansys workflow. Here we introduce some preliminary results with the current state of its implementation as of Fluent Icing release 2023R2. Example cases include several selections from the 1st Ice prediction workshop with experimental comparisons as well as results obtained earlier with the Eulerian droplet solution strategy. Collection efficiency comparisons on clean geometries show good agreement between Eulerian and Lagrangian methods when the particle seeds are in the millions range.
Technical Paper

A Three-Layer Model for Ice Crystal Icing in Aircraft Engines

2023-06-15
2023-01-1481
This paper presents the current state of a three-layer surface icing model for ice crystal icing risk assessment in aircraft engines, being developed jointly by Ansys and Honeywell to account for possible heat transfer from inside an engine into the flow path where ice accretion occurs. The bottom layer of the proposed model represents a thin metal sheet as a substrate surface to conductively transfer heat from an engine-internal reservoir to the ice layer. The middle layer is accretion ice with a porous structure able to hold a certain amount of liquid water. A shallow water film layer on the top receives impinged ice crystals. A mass and energy balance calculation for the film determines ice accretion rate. Water wicking and recovery is introduced to transfer liquid water between film layer and porous ice accretion layer.
Technical Paper

Numerical Study of Iced Swept-Wing Performance Degradation using RANS

2023-06-15
2023-01-1402
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Effect of Split-Injection Strategies on Engine Performance and Emissions under Cold-Start Operation

2023-04-11
2023-01-0236
The recently concluded partnership for advancing combustion engines (PACE) was a US Department of Energy consortium involving multiple national laboratories focused on addressing key efficiency and emission barriers in light-duty engines. Generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior was a major pillar in this program. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon, and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster three-way catalyst light-off, and engine out emissions during that period. In this study, engine performance, emissions, and catalyst warmup potential were monitored while the engine was operated using a single direct injection (baseline case) as well as a two-way-equal-split direct injection strategy.
Technical Paper

Auto Stop-Start Fuel Consumption Benefits

2023-04-11
2023-01-0346
With increasingly stringent regulations mandating the improvement of vehicle fuel economy, automotive manufacturers face growing pressure to develop and implement technologies that improve overall system efficiency. One such technology is an automatic (auto) stop-start feature. Auto stop-start reduces idle time and reduces fuel use by temporarily shutting the engine off when the vehicle comes to a stop and automatically re-starting it when the brake is released, or the accelerator is pressed. As mandated by the U.S. Congress, the U.S. Environmental Protection Agency (EPA) is required to keep the public informed about fuel saving practices. This is done, in partnership with the U.S. Department of Energy (DOE), through the fueleconomy.gov website. The “Fuel-Saving Technologies” and “Gas Mileage Tips” sections of the website are focused on helping the public make informed purchasing decisions and encouraging fuel-saving driving habits.
Journal Article

Optimizing Long Term Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy Duty Fuel Cell Electric Vehicles

2023-04-11
2023-01-0064
The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This paper develops a long-term plan for refueling infrastructure deployment using the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy duty (HD) fuel cell electric commercial vehicles (FCEV).
X