Refine Your Search

null

Search Results

Viewing 1 to 10 of 10
Technical Paper

Computational Study of a DrivAer Model by Using the Partially-Averaged Navier-Stokes Approach in Combination with the Immersed Boundary Method

2024-04-09
2024-01-2527
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the Finite Volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1, 2]. In that work, it was shown that the same accuracy of predicted aerodynamic forces could be achieved for both types of computational meshes, the standard body-fitted mesh and the immersed boundary (IB) Cartesian mesh, by using the Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model as well as by using the Partially-Averaged Navier-Stokes (PANS) method. Based on the accuracy achieved, Basara et al. [2] concluded that further work could focus on evaluating the turbulence modelling on the immersed boundary meshes only.
Technical Paper

Scale-Resolving Simulations Combined with the Immersed Boundary Method for Predicting Car Aerodynamics

2023-04-11
2023-01-0561
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the finite volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1]. In that work, it was shown that the same accuracy of predicted aerodynamic forces can be achieved by using Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model on both types of meshes, the standard body-fitted (BF), and on the immersed boundary (IB) mesh. Due to all well-known shortcomings of the steady state approach, in this work we deal with the Partially Averaged Navier-Stokes (PANS), which belongs to the hybrid RANS-LES (scale resolving / high fidelity) methods. This approach was developed to resolve a part of the turbulence spectrum adjusting seamlessly from RANS to DNS (Direct Numerical Simulation).
Journal Article

Numerical Analysis of Combustion Process in the Dual Fuel Internal Combustion Engine

2023-04-11
2023-01-0206
Fully flexible dual fuel (DF) internal combustion (IC) engines, that can burn diesel and gas simultaneously, have become established among heavy-duty engines as they contribute significantly to lower the environmental impact of the transport sector. In order to gain better understanding of the DF combustion process and establish an effective design methodology for DFIC engines, high fidelity computational fluid dynamics (CFD) simulation tools are needed. The DF strategy poses new challenges for numerical modelling of the combustion process since all combustion regimes have to be modelled simultaneously. Furthermore, DF engines exhibit higher cycle-to-cycle variations (CCV) compared to the pure diesel engines. This issue can be addressed by employing large eddy simulation coupled with appropriate DF detailed chemistry mechanism. However, such an approach is computationally too expensive for today’s industry-related engine calculations.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Scale-Resolving Simulation of an ‘On-Road’ Overtaking Maneuver Involving Model Vehicles

2018-04-03
2018-01-0706
Aerodynamic properties of a BMW car model taking over a truck model are studied computationally by applying the scale-resolving PANS (Partially-averaged Navier-Stokes) approach. Both vehicles represent down-scaled (1:2.5), geometrically-similar models of realistic vehicle configurations for which on-road measurements have been performed by Schrefl (2008). The operating conditions of the modelled ‘on-road’ overtaking maneuver are determined by applying the dynamic similarity concept in terms of Reynolds number consistency. The simulated vehicle configuration constitutes of a non-moving truck model and a car model moving against the air flow, the velocity of which corresponds to the car velocity.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Technical Paper

Shape Optimization by an Adjoint Solver based on a near-wall Turbulence Model

2015-04-14
2015-01-1358
The aim of this paper is to present the adjoint equations for shape optimization derived from steady incompressible Navier-Stokes (N-S) equations and an objective functional. These adjoint Navier-Stokes equations have a similar form as the N-S equations, while the source terms and the boundary conditions depend on the chosen objective. Additionally, the gradient of the targeted objective with respect to the design variables is calculated. Based on this, a modification of the geometry is computed to arrive at an improved objective value. In order to find out, whether a more sophisticated approach is needed, the adjoint equations are derived by using two different approaches. The first approach is based on the frozen turbulence assumption and the second approach, which is advanced in this paper, is derived from the near wall k − ζ − f turbulence model.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

Numerical Simulation Study of Cavitating Nozzle Flow and Spray Propagation with Respect to Liquid Compressibility Effects

2014-04-01
2014-01-1421
The paper addresses aspects of modeling cavitating flows within high pressure injection equipment while considering the effects of liquid compressibility. The presented numerical study, performed using the commercial CFD code AVL FIRE®, mimics common rail conditions, where the variation in liquid density as a function of pressure may be relevant owing to very high pressure injection scenarios. The flow through the injector has been calculated and the conditions at the outlet of the nozzle orifice have been applied as inlet condition for subsequent Euler-Lagrangian spray calculations to investigate the effects of liquid compressibility treatment on spray propagation. Flows of such nature are of interest within automotive and other internal combustion (IC) related industries to obtain good spray and emissions characteristics.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
X