Refine Your Search

Topic

Author

Search Results

Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

Hardware-in-the-Loop Testing for Optimizing Inverter Performance in Electric Vehicles

2023-08-28
2023-24-0178
In recent years, the use of high-power inverters has become increasingly prevalent in vehicles applications. With the increasing number of electric vehicle models comes the need for efficient and reliable testing methods to ensure the proper functioning of these inverters. One such method is the use of Hardware-in-the-Loop (HiL) environments, where the inverter is connected to a simulated environment to test its performance under various operating conditions. HiL testing allows for faster and more cost-effective testing than traditional methods and provides a safe environment to evaluate the inverter's response to different scenarios. Further, in such an environment, it is possible to specifically stimulate those system states in which conflicts between the lines arise regarding the ideal system parametrization. By combining HiL testing with design-of-experiments and modelling methods, the propulsion system can hence be optimized in a holistic manner.
Technical Paper

Specialised Gear Rig for the Assessment of Loaded Transmission Error, Line of Action and Summarized Mesh Point

2023-04-11
2023-01-0463
Within gear pair development, the simulation of loaded transmission error, line of action and summarized mesh point are crucial information in design optimization as well as reliability, NVH and efficiency prediction. These properties and variables are difficult to evaluate and are usually only assessed through proxy-variables such as unloaded transmission error or contact pattern assessment. Alternatively, large design loops can be generated when prototypes are produced to directly assess the results of reliability, NVH and efficiency and simulation models updated to the results, but not directly calibrated. This work will showcase an advanced test facility with the unique capabilities to evaluate all gear contact types (including hypoid, beveloid, cylindrical and spiral) under loaded conditions while assessing position and force data that can be used to validate simulation models directly and enhance design development.
Technical Paper

Lubrication Testing Methodology for Vehicle Class and Usage Based Validation

2022-08-30
2022-01-1101
System lubrication in automotive powertrains is a growing topic for development engineers. Hybrid and pure combustion system complexity increases in search of improved efficiency and better control strategy, increasing the number of components with lubrication demand and the interplay between them, while fully electric systems drive for higher input speeds to increase e-motor efficiency, increasing bearing and gear feed rate demands. Added to this, many e-axle and hybrid systems are in development with a shared medium and circuit for e-motor cooling and transmission lubrication. Through all this, the lubricant forms a common thread and is a fundamental component in the system, but no standardized tests can provide a suitable methodology to investigate the adequate lubrication of components at powertrain level, to support the final planned vehicle usage.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Automated Test Case Generation and Virtual Assessment Framework for UN Regulation on Automated Lane Keeping Systems

2021-04-06
2021-01-0870
Validation of highly automated or autonomous vehicles is nowadays still a major challenge for the automotive industry. Furthermore, the homologation of ADAS/AD vehicles according to global regulations is getting more essential for their safe development and deployment around the world. In order to assure that the autonomous driving function is able to cope with the huge number of possible situations during operation, comprehensive testing of the functions is required. However, conventional testing approaches such as driving distance-based validation approach in the real world, can be time- and cost-consuming. Therefore, a scenario-based virtual validation and testing method is considered to be a proper solution. In this paper, we propose a virtual assessment framework using a fully automated test case generation method. This framework is embedded into the continuous development and validation process.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Dual Mode VCS Variable Compression System - System Integration and Vehicle Requirements

2019-04-02
2019-01-0248
Future legislation scenarios as well as stringent CO2 targets, in particular under real driving conditions, will require the introduction of new and additional powertrain technologies. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the Internal Combustion Engine (ICE). There is clearly a competition of new and different ICE-Technologies [1] including VCR. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The implementation of Miller or Atkinson cycles is an essential criterion for increased geometric Compression Ratio (CR). The DUAL MODE Variable Compression System (VCS)TM enables a 2-stage variation of the connecting rod length and thus of the compression ratio (CR).
Technical Paper

Model Based Assessment of Real-Driving Emissions - A Variation Study on Design and Operation Parameter

2019-01-09
2019-26-0241
In 2017 the European authorities put into effect the first part of a new certification test procedure for Real Driving Emissions (RDE). Similar tests are planned in other regions of the world, such as the upcoming China 6a/6b standards, further tightening emission limits, and also the introduction of RDE tests. Both restrictions pose challenging engineering tasks for upcoming vehicles. RDE certification tests feature significantly more demanding engine operating conditions and thus, emit more pollutants by orders of magnitude compared to known cycles like NEDC. Here, especially the reduction of NOx is a specific technical challenge, as it needs to compromise also with reduction targets on carbon dioxide. The fulfilment of both emission limits requires a widening of the focus from an isolated engine or exhaust aftertreatment view to a system engineering view involving all hardware and software domains of the vehicle.
Technical Paper

Achieving Compliance to RDE - How Does This Development Target Impact the Development Process, Testing Methodologies and Tools

2019-01-09
2019-26-0358
At first glance RDE seems to be a road testing topic only, mistakenly. While Type approval test must be performed at the Road and Chassis Dyno, development work beforehand delivers solutions fulfilling the demanded legislation limits. Making the right development steps and decisions will lead to a technical solution within economy of scales. Much of this work done happens on engine testbeds and Real Driving Emissions (RDE) per UN-ECE legislation or the new test cycle for the chassis dyno according WLTP (Worldwide Harmonized Light-Duty Test Procedure) will not change that. The question is, are engine test beds fit for this new challenge or are changes required? One characteristic element of RDE is the randomness of operating conditions generated by a road drive. There must be found a way, to achieve RDE relevant test conditions in a most reproducible manner.
Technical Paper

Model-Based Approach for Engine Performance Optimization

2018-10-30
2018-32-0082
State-of-the-art motorcycle engines consist of numerous variable components and require a powerful motor management to meet the growing customer expectations and the legislative requirements (e.g. exhaust and noise emissions, fuel consumption) at the same time. These demands are often competing and raise the level of complexity in calibration. In the racing domain, the optimization requirements are usually higher and test efficiency is crucial. Whilst the number of variables to control is growing, the time to perform an engine optimization remains the same or is even shortened. Therefore, simulation is becoming an essential part of the engine calibration optimization. Considering the special circumstances in racing, involving valuable hardware, as well as extremely short development and calibration iteration loops, only transient testing is possible.
Technical Paper

Simulation and Application of Lightweight Damping Sandwich Material for I.C. Engines

2018-06-13
2018-01-1565
Making lighter engines is in the agenda of all OEMs in order to make their cars lighter and to reduce CO2 emission based on regulations. On the other hand, the noise regulations are getting more stringent and the customer impression of interior sounds is still an important aspect in vehicle development. Vehicle noise legislation has been revised numerous times since it was first established in February 1970. The latest revision in EU legislation introduces a revised test method which is used to enforce diminishing noise limits in three phases (EU Regulation No. 540/2014). Since 2016 the noise limit for passenger cars has been 72 dB(A). It will be reduced to 70 dB(A) in 2020 and to 68 dB(A) in 2024. These vehicle pass by noise limits cascade down to limitations on engine noise. New engine designs face a trade-off between a lightweight design and fulfilling the NVH targets. The conventional design updates are done by adding ribs and usually mass to the engine.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Diffusion Supporting Passive Filter Regeneration- A Modeling Contribution on Coated Filters

2018-04-03
2018-01-0957
Wall flow particulate filters have been used as a standard exhaust aftertreatment device for many years. The interaction of particulate matter (PM) regeneration and catalytically supported reactions strongly depends on the given operating conditions. Temperature, species concentration and mass flow cause a change from advective to diffusive-controlled flow conditions and influence the rate controlling dominance of individual reactions. A transient 1D+1D model is presented considering advective and diffusive transport phenomena. The reaction scheme focuses on passive PM conversion and catalytic oxidation of NO. The model is validated with analytical references. The impact of back-diffusion is explored simulating pure advective and combined advective diffusive species transport. Rate approaches from literature are applied to investigate PM conversion at various operating conditions.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

Shape Optimization by an Adjoint Solver based on a near-wall Turbulence Model

2015-04-14
2015-01-1358
The aim of this paper is to present the adjoint equations for shape optimization derived from steady incompressible Navier-Stokes (N-S) equations and an objective functional. These adjoint Navier-Stokes equations have a similar form as the N-S equations, while the source terms and the boundary conditions depend on the chosen objective. Additionally, the gradient of the targeted objective with respect to the design variables is calculated. Based on this, a modification of the geometry is computed to arrive at an improved objective value. In order to find out, whether a more sophisticated approach is needed, the adjoint equations are derived by using two different approaches. The first approach is based on the frozen turbulence assumption and the second approach, which is advanced in this paper, is derived from the near wall k − ζ − f turbulence model.
Technical Paper

Generic software architecture for cost efficient powertrain electrification

2015-04-14
2015-01-1630
Hybrid-electric vehicles provide additional functionality compared to conventional vehicles. So-called ‘hybrid’ software functions are required to coordinate the conventional powertrain control and these additional control functions. A key factor to reduce the fuel consumption lies in optimal control of the entire interconnected powertrain. This paper aims to provide a framework for efficient interface definition, connection and coordination of control units for hybrid electric vehicles. Such a framework supports an efficient development of control unit architectures and the distribution of software functions. The generic approach necessitates modular software functions. It defines the distribution of these functions in control units optimized with respect to reuse, interfaces and compatibility with different powertrain topologies and electrification variants, especially also considering compatibility with a conventional powertrain and its electric hybridization.
X