Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Optimal Automated Calibration of Model-Based ECU-Functions in Air System of Diesel Engines

2018-05-05
2018-01-5003
The success of model-based ECU-functions relies on precise and efficient modeling of the behavior of combustion engines. Due to the limited computing power, usually a combination of physical models and calibration parameters is preferred for engine modeling in ECU. The parameters can be scalars, 1 or 2-dimensional empirical models, such as look-up table for volumetric efficiency and effective area of the exhaust gas recirculation (EGR). A novel algorithm is proposed to automatically calibrate the look-up tables characterizing stationary functional relationships in ECU-function of the air system of a diesel engine with minimum calibration cost. The algorithm runs in the framework of online design of experiment (DoE), in which Gaussian process model (GPM) is adopted to approximate the relationships of interest.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

HD Base Engine Development to Meet Future Emission and Power Density Challenges of a DDI™ Engine

2007-10-30
2007-01-4225
This paper describes development challenges for Heavy-Duty (HD) on-highway Diesel Direct Injection (DDI™) engines to meet the extremely advanced US-EPA 2010 (later named US 2010) emission limits while further increasing power density in combination with competitive engine efficiency. It discusses technologies and solutions for lowest engine-out emissions in combination with most competitive fuel consumption values and excellent dynamic behavior. To achieve these challenging targets, base engine hardware requirements are described. In detail the development of EGR systems, especially the challenges of running high EGR rates over the whole engine speed range also at high load, the dynamic EGR control for transient engine operation to achieve lowest NOx emissions at the smoke limit with excellent load response is discussed. Also the effect of the turbo-machinery on power density and transient engine behavior is shown.
Technical Paper

The Clean Heavy Duty Diesel Engine of the Future: Strategies for Emission Compliance

2001-11-01
2001-28-0045
The internal combustion engines, and the heavy duty truck diesel engines in particular, are facing a severe challenge to cope with the upcoming stringent emission legislation world-wide. To comply with these low limits, engine internal measures must be complemented with exhaust gas aftertreatment systems with sophisticated electronic control. A reduction of NOx and particulate emission of more than 90% is required. Various strategies to comply with Euro 4, 5 and US 2007 are discussed, also in view of engine performance, fuel economy and cooling system load. Recommendations are given for the most suitable approach to comply also in future with emission legislation in Europe and the United States.
Technical Paper

Electronic Braking System EBS - Status and Advanced Functions

1998-11-16
982781
Since 1996 a 2nd Generation EBS has been available in Europe as an advanced brake system offering a variety of advantages to the OEM as well as to the truck and fleet owner. EBS enhances vehicle safety and improves the braking performance to a “passenger car like” braking feel, allowing less experienced drivers better vehicle handling. The brake lining wear control and retarder integration allow the reduction of operational costs. The safety enhancements achieved by EBS in conjunction with disc brakes, are rewarded by European truck insurance companies by lower insurance fees. The importance of EBS will still gain significantly through the developments in process. EBS is the platform for ESP and ACC, which will be a major contributer to better integration of trucks in dense traffic flow.
Technical Paper

Brake by Wire for Commercial Vehicles

1992-11-01
922489
This address presents the ongoing development of the commercial-vehicle braking system, over and beyond ABS/ASR, towards a brake by wire system (electronically controlled braking system ELB) with pressure-regulating circuit and additional functions. Following the discussion and selection of various concepts, we will present different versions with individual and combined components for the towing vehicle and for the trailer. The safety concept of a pneumatic back-up circuit will be dealt with, as well as the communication through data bus (CAN) both within the braking system itself and with other vehicle systems. The improvement possibilities inherent in ELB will be detailed, with the emphasis on increasing road and traffic safety, on reducing operating costs, and on future vehicle-guidance functions.
Technical Paper

Anti-Lock Braking System for Commercial Vehicles

1988-10-01
881821
Commercial vehicles must convey people and goods safely and reliable, irrespective of the weather and road conditions. The ABS safety braking systems are an essential prerequisite for fulfillment of this primary task. ABS has been used in European commercial vehicles since 1981. Today there are already fittet as standard in buses to some extend. The contribution to increasing road safety is causing the European lawmakers to make ABS statutory for commercial vehicles and to make it part of their compulsory equipment. Suitable anti-lock braking systems and closed loop configurations for commercial vehicles are demonstrated by theoretical observations and technical driving trials, their axlespecific and closed-loop control characteristics are highlighted.
Technical Paper

Traction Control (ASR) for Commercial Vehicles. A Further Step Towards Safety on our Roads

1987-11-01
872272
Alongside steering, accelerating and braking are the basic operations in the automobile which are nowadays still left to the driver to perform in their entirety. In performing these basic functions, it may come about that excessive demands are made upon a driver, these arising due to poor road conditions - rain, snow and ice - or as a result of suddenly changing traffic situations. With the introduction of anti-lock braking systems (ABS), a decisive step has been taken to increase active driving and traffic safety. The ABS prevents the lockup of the wheels during overbraking. The vehicle remains steerable and retains stable directional control. Furthermore, in many cases, a shorter braking distance is gained compared to braking with the wheels locked up. BOSCH has been manufacturing and supplying ABS for passenger cars since 1978 and for commercial vehicles and buses since 1981. ABS has proved to be an overwhelming success in practical usage.
X