Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Method for Root Bending Fatigue Life Prediction in Differential Gears and Validation with Hardware Tests

2024-04-09
2024-01-2249
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test.
Technical Paper

Virtual Test Bed (VTB) Based Engine Calibration: Unique Approach to Ensure Engine Component Protection & to Meet WNTE in Different Environment Condition for Medium Duty Diesel Engine

2024-01-16
2024-26-0045
In view of BS-VI emission norms implementation in Commercial Vehicle (CV) application, the emissions are not only confirmed in standard condition but also in non-standard condition including different combinations of ambient temperature and pressure especially for checking the emission in WNTE cycle. However, achieving the emissions in different environmental conditions require physical emission calibration to be performed in those conditions. Hence, engine must be calibrated in climatic test chambers to ensure emission in different climatic conditions leading to multifold increase in the calibration effort. With addition of BS-VI emission regulation, After Treatment System (ATS) is a mandatory requirement to reduce the tail pipe emissions. Efficient functioning of ATS requires enough heating to convert the engine out emissions. Vehicle level Real Drive Emission (RDE) measurement without Conformity Factor (CF) limitation are added as an important legislative requirement.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

Control of Diesel Engine Exhaust Gas Recirculation System Deposits with Fuel Additives

2022-08-30
2022-01-1072
Exhaust Gas Recirculation (EGR) is employed in diesel engines to reduce engine-out NOx emissions. Despite the concerted design efforts of manufacturers, high-pressure Exhaust Gas Recirculation (HP-EGR) systems can be susceptible to fouling as the particulate matter, hydrocarbons and other entrained species deposit from the exhaust gas flow as it cools on its passage through the EGR system. Such deposits can lead to a number of problems including deterioration of emissions, fuel efficiency, performance and drivability, as well as breakdowns. The development of an engine test method to enable the study of the impact of fuel on deposits in the HP-EGR system was reported in 2020. In the test, a 4-cylinder light-duty diesel engine of 1.6L displacement runs at conditions conducive to EGR deposit formation over 24 hours and the impact of fuels on deposit formation is determined through weighing of the EGR system components before and after the test.
Journal Article

Development and Application of an Engine Test Method to Rate the Internal Injector Deposit Formation of Diesel Fuels and Additives

2022-08-30
2022-01-1070
Design efforts to improve the hydraulic efficiency of high-pressure diesel fuel systems and thus further improve overall engine efficiency have resulted in the utilisation of low-spill control valves and reduced injector component clearances to reduce general leakage losses. Overall, these advances have contributed significantly to the high efficiency diesel engines of today. However, the combination of very high fuel pressures, cavitation and low fuel leakage volumes increases the heating of the remaining fuel, increasing temperature and, in turn, the propensity for deposits to form inside the injector. This deposit phenomenon is commonly known as Internal Diesel Injector Deposits (IDID) and can cause rough engine running and failed engine starts requiring injector cleaning or replacement. Methods studying this phenomenon are under development in the industry.
Technical Paper

Numerical Simulations of the Effect of Cold Fuel Temperature on In-Nozzle Flow and Cavitation Using a Model Injector Geometry

2020-09-15
2020-01-2116
In the present study, Large Eddy Simulations (LES) have been performed with a 3D model of a step nozzle injector, using n-pentane as the injected fluid, a representative of the high-volatility components in gasoline. The influence of fuel temperature and injection pressure were investigated in conditions that shed light on engine cold-start, a phenomenon prevalent in a number of combustion applications, albeit not extensively studied. The test cases provide an impression of the in-nozzle phase change and the near-nozzle spray structure across different cavitation regimes. Results for the 20oC fuel temperature case (supercavitating regime) depict the formation of a continuous cavitation region that extends to the nozzle outlet. Collapse-induced pressure wave dynamics near the outlet cause a transient entrainment of air from the discharge chamber towards the nozzle.
Journal Article

Development of an Engine Test to Rate the EGR Deposit Formation Propensity of Fuels in Light-Duty Diesel Engines

2020-09-15
2020-01-2096
Exhaust Gas Recirculation (EGR) is employed in diesel engines to reduce engine-out NOx. Carbon-containing deposits form in the EGR systems of modern diesel engines as the particulate matter, hydrocarbons and other entrained species deposit from the exhaust gas flow as it cools. Much work has been done by Original Equipment Manufacturers (OEMs) to reduce deposits and mitigate their effects by optimized dimensioning of EGR coolers and valves, introduction of EGR cooler bypass for use in the most sensitive cold conditions and experimenting with oxidation catalysts upstream of the EGR system. Nevertheless, deposits forming in the high-pressure Exhaust Gas Recirculation (HP-EGR) systems of modern diesel engines can sometimes lead to a number of problems including emissions and fuel consumption deterioration, poor performance and drivability, as well as breakdowns. An engine test method has been developed to enable the impact of fuel on deposits in the HP-EGR system to be studied.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

2020-04-14
2020-01-0827
Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Technical Paper

Lubricant Impact on Friction by Engine Component: A Motored Friction Tear Down Assessment of a Production 3.6L Engine

2019-12-19
2019-01-2239
Worldwide, Fuel Economy (FE) legislation increasingly influences vehicle and engine design, and drives friction reduction. The link between lubricant formulation and mechanical friction is complex and depends on engine component design and test cycle. This Motored Friction Tear Down (MFTD) study characterizes the friction within a 3.6L V6 engine under operating conditions and lubricant choices relevant to the legislated FE cycles. The high-fidelity MFTD results presented indicate that the engine is a low-friction engine tolerant of low viscosity oils. Experiments spanned four groups of engine hardware (reciprocating, crankshaft, valvetrain, oil pump), five lubricants (four candidates referenced against an SAE 0W-20) and five temperature regimes. The candidate lubricants explored the impact of base oil viscosity, viscosity modifier (VM) and friction modifier (FM) content.
Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Prediction of the Combustion and Emission Processes in Diesel Engines Based on a Tabulated Chemistry Approach

2017-10-08
2017-01-2200
Turbulent combustion modeling in a RANS or LES context imposes the challenge of closing the chemical reaction rate on the sub-grid level. Such turbulent models have as their two main ingredients sources from chemical reactions and turbulence-chemistry interaction. The various combustion models then differ mainly by how the chemistry is calculated (level of detail, canonical flame model) and on the other hand how turbulence is assumed to affect the reaction rate on the sub-grid level (TCI - turbulence-chemistry interaction). In this work, an advanced combustion model based on tabulated chemistry is applied for 3D CFD (computational fluid dynamics) modeling of Diesel engine cases. The combustion model is based on the FGM (Flamelet Generated Manifold) chemistry reduction technique. The underlying chemistry tabulation process uses auto-ignition trajectories of homogeneous fuel/air mixtures, which are computed with detailed chemical reaction mechanisms.
Journal Article

A Chemical and Morphological Study of Diesel Injector Nozzle Deposits - Insights into their Formation and Growth Mechanisms

2017-03-28
2017-01-0798
Modern diesel passenger car technology continues to develop rapidly in response to demanding emissions, performance, refinement, cost and fuel efficiency requirements. This has included the implementation of high pressure common rail fuel systems employing high precision injectors with complex injection strategies, higher hydraulic efficiency injector nozzles and in some cases <100µm nozzle hole diameters. With the trend towards lower diameter diesel injector nozzle holes and reduced cleaning through cavitation with higher hydraulic efficiency nozzles, it is increasingly important to focus on understanding the mechanism of diesel injector nozzle deposit formation and growth. In this study such deposits were analysed by cross-sectioning the diesel injector along the length of the nozzle hole enabling in-depth analysis of deposit morphology and composition change from the inlet to the outlet, using state-of-the-art electron microscopy techniques.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Scale-Resolving Simulations of the Flow in Intake Port Geometries

2016-04-05
2016-01-0589
A computational study of the flow in intake port geometries has been performed. Three different intake port geometries, namely two combined tangential and helical ports and one quiescent port were analyzed. Each of these cases was calculated for different valve lifts and the results were compared with available measurements. The focus of this paper is on the performance assessment of the variable resolution Partial-Averaged Navier-Stokes (PANS) method. Calculations have been also performed with the Reynolds-averaged Navier-Stokes (RANS) model, which is presently a state-of-the-art approach for this application in the industry. Besides the averaged integral values like a discharge coefficient and a swirl coefficient, the predicted velocity magnitude fields at the measured cross sections of the ports are compared due to available Particle Image Velocimetry (PIV) measurements.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

Multi-Component Modeling of Diesel Fuel for Injection and Combustion Simulation

2013-09-08
2013-24-0007
Accurate simulation tools are needed for rapid and cost effective engine development in order to meet ever tighter pollutant regulations for future internal combustion engines. The formation of pollutants such as soot and NOx in Diesel engines is strongly influenced by local concentration of the reactants and local temperature in the combustion chamber. Therefore it is of great importance to model accurately the physics of the injection process, combustion and emission formation. It is common practice to approximate Diesel fuel as a single compound fuel for the simulation of the injection and combustion process. This is in many cases sufficient to predict the evolution of the in-cylinder pressure and heat release in the combustion chamber. The prediction of soot and NOx formation depends however on locally component resolved quantities related to the fuel liquid and gas phase as well as local temperature.
Journal Article

Formation and Removal of Injector Nozzle Deposits in Modern Diesel Cars

2013-04-08
2013-01-1684
Deposits forming in the injector nozzle holes of modern diesel cars can reduce and disrupt the fuel injected into the combustion chamber, causing reduced or less efficient combustion, resulting in power loss and increased fuel consumption. A study of the factors affecting injector nozzle tip temperature, a parameter critical to nozzle deposit formation, has been conducted in a Peugeot DW10 passenger car bench engine, as used in the industry standard CEC F-098 injector nozzle deposit test, [1]. The findings of the bench engine study were applied in the development of a Chassis Dynamometer (CD) based vehicle test method using Euro 5 compliant vehicles. The developed test method was refined to tune the conditions as far as practicable towards a realistic driving pattern whilst maintaining sufficient deposit forming tendency to enable test duration to be limited to a reasonable period.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
X