Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Technical Paper

Reduced Order Modeling of Engine Coolant Temperature Model in Plug-In Hybrid Electric Vehicles

2024-04-09
2024-01-2008
In recent years, swift changes in market demands toward achieving carbon neutrality have driven significant developments within the automotive industry. Consequently, employing computer simulations in the early stages of vehicle development has become imperative for a comprehensive understanding of performance characteristics. Of particular importance is the cooling performance of vehicles, which plays a vital role in ensuring safety and overall performance. It is crucial to predict optimal cooling performance, particularly about the heat generated by the powertrain during the initial phases of vehicle development. However, the utilization of thermal analysis models for assessing vehicle cooling performance demands substantial computational resources, rendering them less practical for evaluating performance associated with design changes in the planning phase.
Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Development of New Motor for Electric Vehicles

2024-04-09
2024-01-2206
The world is currently facing environmental issues such as global warming, air pollution, and high energy demand. To mitigate these challenges, the electrification of vehicles is essential as it is effective for efficient fuel utilization and promotion of alternative fuels. The optimal approach for electrification varies across different markets, depending on local energy conditions and current circumstances. Consequently, Toyota has taken the initiative to offer a comprehensive lineup of battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), aiming to provide sustainable solutions tailored to the unique situations and needs of each region. As part of this effort, Toyota has developed the 5th generation of hybrid electric vehicles. This paper describes the electric motor used in the new Toyota Camry which achieves high torque, high power, low losses, and compact design.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

Multiphysics Simulation Supporting Systems Engineering for Fuel Cell Vehicles

2024-01-16
2024-26-0244
Legislative challenges, changing customer needs and the opportunities opened-up by electrification are the major driving forces in today’s automotive industry. Fuel cell vehicles offer the potential for CO2 emission free mobility, especially attractive for heavy duty long-haul range application. The development of key components of fuel cell powered vehicles, namely the fuel cell stack itself as well as the related hydrogen/air supply and thermal management sub-systems, goes hand in hand with various challenges regarding performance, lifetime and safety. The proper layout and sizing of the stack and the related fuel and air supply system components, as well as the suitable dimensioning of the cooling system, are decisive for the overall system efficiency and achievable lifetime.
Technical Paper

Evaluation of Fully Sustainable Low Carbon Gasoline Fuels Meeting Japanese E10 Regular and Premium Octane Specifications

2023-09-29
2023-32-0165
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Technical Paper

Analysis of the effect of hydrogen combustion characteristics on engine performance

2023-09-29
2023-32-0039
The use of hydrogen produced from renewable energy sources is expected to be one of the most promising options for achieving carbon neutrality in automobiles, in addition to electrification and the use of biofuels and synthetic fuels. In recent years, along with fuel cell electric vehicles (FCEVs), there has been renewed interest in hydrogen engines that can utilize internal combustion engine technology. Although hydrogen has the property of a high laminar burning velocity and a wide flammable range compared to other fuels, the actual combustion phenomenon in a real engine is strongly influenced by the turbulence created by the in- cylinder flow and the distribution of fuel and air in the cylinder due to the formation of the mixture. Therefore, to fully utilize hydrogen as a fuel in actual engines and bring out its performance, it is important to understand the basic combustion characteristics of hydrogen in the cylinder and the effects of these factors on hydrogen combustion.
Technical Paper

New Concept Exhaust Manifold for Next-Generation HEV and PHEV

2023-09-29
2023-32-0062
HEV and PHEV require an improved aftertreatment system to clean the exhaust gas in various driving situations. The efficiency of aftertreatment system is significantly influenced by the residence time of the gas in a catalyst which gas flow has generally strong pulsation. Simulation showed up to 70% reduction of exhaust gas emission if the pulsation could be completely attenuated. A new concept exhaust manifold was designed to minimize pulsation flow by wall impingement, with slight increase of pressure loss. Experimental results with new concept exhaust manifold showed exhaust gas emission were reduced 16% at cold condition and 40% at high-load condition.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Model Based Development for Super Lean Burn Gasoline Engine Using Kolmogorov Microscales

2023-04-11
2023-01-0201
Combustion in a lean atmosphere diluted with a large amount of air can greatly improve fuel efficiency by reducing cooling loss [1, 2]. On the other hand, when air-fuel mixture in cylinder becomes lean, the turbulent combustion speed will decrease, resulting in problems such as the generation of unburned hydrocarbon (HC) and combustion instability [3, 4]. In order to solve these problems, it is important to increase the turbulence intensity and combustion speed [5, 6, 7, 8, 9, 10]. When designing combustion in cylinder by using Computational Fluid Dynamics (CFD), K-epsilon model is widely used for a turbulence model, and the calculated turbulence energy k or turbulence intensity u’ have been used as important indices of combustion velocity [11, 12].
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 2: Practical Application to Turbocharger)

2023-04-11
2023-01-0412
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low.
Technical Paper

Development of e-AWD Hybrid System with Turbo Engine for SUVs

2023-04-11
2023-01-0470
This paper describes the development of a new e-AWD hybrid system developed for SUVs. This hybrid system consists of a high-torque 2.4-liter turbocharged engine and a front unit that contains a 6-speed automatic transmission, an electric motor, and an inverter. It also includes a rear eAxle unit that contains a water-cooled high-power motor, an inverter, and a reduction gear, as well as a bipolar nickel-metal hydride battery. By combining a turbo engine that can output high torque across a wide range of engine rpm with two electric motors (front and rear), this system achieves both smooth acceleration with a torquey driving feeling and rapid response when the accelerator pedal is pressed. In addition, new AWD control using the water-cooled rear motor realized more stable cornering performance than the previous e-AWD system.
Technical Paper

Development of Control System for Parallel Hybrid System with Turbo Engine

2023-04-11
2023-01-0547
This paper describes a new control technology that coordinates the operation of multiple actuators in a new hybrid electric vehicle (HEV) system consisting of a turbocharged engine, front and rear electric motors, two clutches, and a 6-speed automatic transmission. The development concept for this control technology is to achieve the driver’s desired acceleration G with a natural feeling engine speed. First, to realize linear acceleration G even while the engine is starting from EV mode, clutch hydraulic pressure reduction control is implemented. Furthermore, the engine start timing is optimized to prevent delayed drive force response by predicting the required maximum power during cranking. Second, to realize linear acceleration, this control selects the proper gear position based on the available battery power, considering noise and vibration (NV) restrictions and turbocharging response delays.
Technical Paper

Development of Three-Way Catalysts with Enhanced Cold Performance

2023-04-11
2023-01-0358
Global focus on CO2 reduction and environmental protection is increasing. To comply with stricter exhaust gas regulations and reduce real world emissions, it is becoming increasingly important to improve the performance of three-way catalysts. Therefore, highly efficient conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) is required. In general, the more active the precious metals used, the better the conversion performance. However, precious metals have supply risks, such as price fluctuation and the uneven distribution of production areas. Therefore, it is necessary to lower emissions while also lowering the amount of precious metals used. This paper focuses on how catalysts are used and describes the development of a new three-way catalyst for the purpose of strengthening cold conversion and decreasing the usage of precious metals.
Technical Paper

Development of 50% Thermal Efficiency S.I. Engine to Contribute Realization of Carbon Neutrality

2023-04-11
2023-01-0241
To prevent global warming, many countries are making efforts to reduce CO2 emissions toward achieving 2050 carbon neutrality. In order to reduce CO2 concentration quickly, in addition to spread of renewable energy and expansion of BEV, it is also important to reduce CO2 emissions by improving thermal efficiency of ICE (internal combustion engine) and utilizing carbon neutral fuels such as synthetic fuels and biofuels. It is well known that lean burn is an effective technology to increase thermal efficiency of engine highly. However, since NOx emission from lean burn engine cannot be reduced with three-way catalyst, there have been issues such as complicated system configuration due to the addition of NOx reduction catalyst or limiting lean operation to narrow engine speed and load in order to meet emission regulation of each country.
Technical Paper

Development of Powertrain System and Battery for BEV

2023-04-11
2023-01-0518
Toyota has launched a new BEV which incorporates our newest evolutions in BEV powertrain systems and vehicle platform innovations. The new BEV uses newly developed large format battery cells, which, in addition to achieving our key performance and safety targets, also incorporates new technologies resulting in improved battery energy density and a reduction in battery deterioration. For the BEV battery cooling, to enhance safety, the cooling plate and the battery cells are separated by a chamber structure. The battery pack also incorporates a newly developed high resistance coolant with low conductivity. The new BEV improves system efficiency by leveraging some technologies that were originally developed for HEV and developing new systems. For example, radiant heating and a newly developed heat pump system improve EV driving range. This presentation will introduce our new battery technologies and discuss our new BEV system.
X