Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Measurement of the Particle Distribution around the Tire of a Light Commercial Vehicle on Unpaved Roads

2024-03-13
2024-01-5032
Dust testing of vehicles on unpaved roads is crucial in the development process for automotive manufacturers. These tests aim to ensure the functionality of locking systems in dusty conditions, minimize dust concentration inside the vehicle, and enhance customer comfort by preventing dust accumulation on the car body. Additionally, deposition on safety-critical parts, such as windshields and sensors, can pose threats to driver vision and autonomous driving capabilities. Currently, dust tests are primarily conducted experimentally at proving grounds. In order to gain early insights and reduce the need for costly physical tests, numerical simulations are becoming a promising alternative. Although simulations of vehicle contamination by dry dust have been studied in the past, they have often lacked detailed models for tire dust resuspension. In addition, few publications address the specifics of dust deposition on vehicles, especially in areas such as door gaps and locks.
Technical Paper

Side Mirror Soiling Investigation through the Characterization of Water Droplet Formation and Size behind a Generic Plate

2024-02-27
2024-01-5030
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

Multiphysics Simulation Supporting Systems Engineering for Fuel Cell Vehicles

2024-01-16
2024-26-0244
Legislative challenges, changing customer needs and the opportunities opened-up by electrification are the major driving forces in today’s automotive industry. Fuel cell vehicles offer the potential for CO2 emission free mobility, especially attractive for heavy duty long-haul range application. The development of key components of fuel cell powered vehicles, namely the fuel cell stack itself as well as the related hydrogen/air supply and thermal management sub-systems, goes hand in hand with various challenges regarding performance, lifetime and safety. The proper layout and sizing of the stack and the related fuel and air supply system components, as well as the suitable dimensioning of the cooling system, are decisive for the overall system efficiency and achievable lifetime.
Technical Paper

Numerical Investigations of the Dust Deposition Behavior at Light Commercial Vehicles

2023-04-24
2023-01-5022
Dry dust testing of vehicles on unpaved dust roads plays a crucial role in the development process of automotive manufacturers. One of the central aspects of the test procedure is ensuring the functionality of locking systems in the case of dust ingress and keeping the dust below a certain concentration level inside the vehicle. Another aspect is the customer comfort because of dust deposited on the surface of the car body. This also poses a safety risk to customers when the dust settles on safety-critical parts such as windshields and obstructs the driver’s view. Dust deposition on sensors is also safety critical and is becoming more important because of the increasing amount of sensors for autonomous driving. Nowadays, dust tests are conducted experimentally at dust proving grounds. To gain early insights and avoid costly physical testing, numerical simulations are considered a promising approach. Simulations of vehicle contamination by dry dust have been studied in the past.
Technical Paper

Experimental Investigation of Droplet Formation and Droplet Sizes Behind a Side Mirror

2022-12-27
2022-01-5107
The investigation of vehicle soiling by improvement of vehicle parts to optimize the surrounding airflow is of great importance not only because of the visibility through windows and at mirrors but also the functionality of different types of sensors (camera, lidar, radars, etc.) for the driver assistance systems and especially for autonomous driving vehicles has to be guaranteed. These investigations and corresponding developments ideally take place in the early vehicle development process since later changes are difficult to apply in the vehicle production process for many reasons. Vehicle soiling is divided into foreign soiling and self-soiling with respect to the source of the soiling water, e.g., direct rain impact, swirled (dirty) water of other road users and own rotating wheels. The investigations of the soiling behavior of vehicles were performed experimentally in a wind tunnel and street tests.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Journal Article

Acoustic-Fluid-Structure Interaction (AFSI) in the Car Underbody

2022-06-15
2022-01-0938
The turbulent flow around vehicles causes high amplitude pressure fluctuations at the underbody, consisting of both hydromechanic and acoustic contributions. This induces vibrations in the underbody structures, which in turn may lead to sound transmission into the passenger compartment, especially at low frequencies. To study these phenomena we present a run time fully coupled acoustic-fluid-structure interaction framework expanding a validated hybrid CFD-CAA solver. The excited and vibrating underbody is resembled by an aluminium plate in the underbody of the SAE body which allows for sound transmission into the interior. Different excitation situations are generated by placing obstacles at the underbody upstream of the aluminium plate. For this setup we carry out a fully coupled simulation of flow, acoustics and vibration of the plate.
Technical Paper

Reduction of Testing Time of PTCE/HTOE Tests Based on Real Road Load Profiles

2022-03-29
2022-01-0176
HTOE (High Temperature Operation Endurance) and PTCE (Power Thermal Cycle Endurance) tests are typically performed according automotive group standards, such as LV 124 [1], VW80000 [2], FCA CS.00056 [3] or PSA B21 7130 [4]. The LV 124-2 group standard, composed by representatives of automobile manufacturers like Audi AG, BMW AG, Volkswagen AG and Porsche AG describes a wide range of environmental tests and their requirements. In addition, calculation parameters and a method are given in the standard. These group standard tests are often attributed to IEC 60068-2-2 [5] for HTOE and IEC 60068-2-14 [6] for PTCE. As both of these tests are typically of long duration, fundamentally linked to reliability (therefore requiring a statistically significant number of samples) and of considerable importance to power electronic, they are worthy of additional scrutiny for automotive developers as most automotive development moves towards electrification.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-04-06
2021-01-0328
Eliminating toxic exhaust emissions, amongst them particulate matter (PM), is one of the driving factors behind the increasing use of electrified vehicles. However, it is frequently overseen that PM arise not only from combustion, but from non-exhaust traffic related causes as well; in particular from the vehicle brakes, tires and the road surface. Furthermore, as electrified vehicles weigh more and typically exhibit higher torques at low speeds, their non-exhaust emissions tend to be higher than for comparable conventional vehicles, especially those generated by tires. Fortunately, tire related emissions are directly related to tire wear, so that limiting tire wear can reduce these emissions as well. This can be accomplished by intelligently modulating the vehicle torque profile in real time, to limit the operation in conditions of higher tire wear.
Technical Paper

Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications

2019-04-02
2019-01-0206
In contrast to the well-established “standard” log-law wall function, the analytical wall function (AWF) as an advanced modelling approach has not been extensively used in the industrial computational fluid dynamics (CFD) applications. As the model was originally developed aiming at computations on relatively coarse meshes, potential stability issues may arise due to the pressure-gradient sensitivity if employing locally inappropriate mesh layers, typically associated with the complex geometry details. This work evaluates performance of the thermal AWF, as proposed by Suga [4], in conjunction with the main flow field computed employing the k-ζ-f turbulence model and the hybrid wall treatment (denoted as AWF-e) within the Reynolds-averaged Navier-Stokes (RANS) framework.
Technical Paper

Modular and Swappable 48V Battery Systems for Emerging Markets

2019-01-09
2019-26-0032
Electrification globally shows promise in reducing greenhouse and noxious emissions. Although there is immense potential in such technologies penetrating across vehicle segments in the Indian market, the key lies in offering scalable, cost effective battery solutions suiting the diverse product and customer needs. This paper describes the development and possible applications of a low voltage battery system that fulfills the current needs on the Indian market. Based on real-world driving profiles the energy and power output required for the target platform are determined. Keeping in mind the Indian operating conditions, safety requirements, driving behavior, charging infrastructure, operational costs, supplier network and serviceability, technical requirements for such systems are described. Also, benchmarking data of current battery systems help to optimize the mechanical, thermal, and electrical layouts.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Worldwide Electrical Energy Consumption of Various HVAC Systems in BEVs and Their Thermal Management and Assessment

2018-04-03
2018-01-1190
Battery electric vehicles (BEVs) are equipped with Mobile Air Conditioning systems (MACs) to ensure a comfortable cabin temperature in all climates and ambient conditions as well as the optional conditioning of the traction battery. An assessment of the global electrical energy consumption of various MACs has been derived, where the basis of the assessment procedure is the climate data GREEN-MAC-LCCP 2007 (Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance) and the improved LCCP2013 (Life Cycle Climate Performance. The percentage driving time during 6 AM and 24 PM is divided into six different temperature bins with the solar radiation and relative humidity for 211 cities distributed over Europe, North, Central, and South America, Asia, South West Pacific, and Africa. The energy consumption of the MACs is determined by a thermal vehicle simulation. In this work, four different MACs are simulated and compared.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
X