Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Feasibility of Particulate Mass and Number Measurement with Portable Emission Measurement Systems (PEMS) for In-Use Testing

2011-09-11
2011-24-0199
Different particulate mass (PM) portable emission measurement systems (PEMS) were evaluated in the lab with three heavy-duty diesel engines which cover a wide range of particle emission levels. For the two engines without Diesel Particulate Filters (DPF) the proportional partial flow dilution systems SPC-472, OBS-TRPM, and micro-PSS measured 15% lower PM than the full dilution tunnel (CVS). The micro soot sensor (MSS), which measures soot in real time, measured 35% lower. For the DPF-equipped engine, where the emissions were in the order of 2 mg/kWh, the systems had differences from the CVS higher than 50%. For on-board testing a real-time sensor is necessary to convert the gravimetric (filter)-based PM to second-by-second mass emissions. The detection limit of the sensor, the particle property it measures (e.g., number, surface area or mass, volatiles or non-volatiles) and its calibration affect the estimated real-time mass emissions.
Technical Paper

Advanced Catalyst Coatings for Diesel Particulate Filters

2008-04-14
2008-01-0483
Novel catalytic coatings with a variety of methods based on conventional and novel synthesis routes are developed for Diesel Particulate Filters (DPFs). The developed catalytic composition exhibits significant direct soot oxidation as evaluated by reacting mixtures of diesel soot and catalyst powders in a thermogravimetric analysis apparatus (TGA). The catalyst composition was further deposited on oxide and non-oxide porous filter structures that were evaluated on an engine bench with respect to their filtration efficiency, pressure drop behavior and direct soot oxidation activity under realistic conditions. The effect of the catalyst amount on the filtration efficiency of non-oxide filters was also investigated. Evaluation of the indirect soot oxidation was conducted on non-oxide catalytic filters coated with precious metal.
Technical Paper

Study on Catalyzed-DPF for Improving the Continuous Regeneration Performance and Fuel Economy

2007-04-16
2007-01-0919
It is a big challenge how to satisfy both the purification of exhaust gas and the decrease of fuel penalty, that is, carbon-dioxide emission. Regarding the Diesel Particulate Filter (DPF) applied in the diesel after-treatment system, it must be effective for lowering the fuel penalty to prolong the interval and reduce the frequency of the DPF regeneration operation. This can be achieved by a DPF that has high Particulate Matter (PM) mass limit and high PM oxidation performance that is enough to regenerate the DPF continuously during the normal running operation. In this study, the examination of the pore structure of the wall of a DPF that could expand the continuous regeneration region in the engine operation map was carried out. Several porous materials with a wide range of pore structure were prepared and coated with a Mixed Oxide Catalyst (MOC). The continuous regeneration performance was evaluated under realistic conditions in the exhaust of a diesel engine.
Technical Paper

Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity

2005-04-11
2005-01-0670
Diesel Particulate Filters (DPFs) need to be periodically regenerated in order to achieve efficient and safe vehicle operation. Under typical diesel exhaust conditions, this invariably requires the raising of the exhaust gas temperature by active means, up to the point that particulate (soot) oxidation can be self-sustained in the filter. In the present work the development path of an advanced catalytic filter technology is presented. Full scale optimized Catalytic Diesel Particulate Filters (CDPFs) are tested in the exhaust of a light-duty modern diesel engine in line with a Diesel Oxidation Catalyst (DOC). The management of the DOC-CDPF emission control system is facilitated by a virtual soot sensor in order to ensure energy-efficient operation of the emission control system.
Technical Paper

Study on the Filter Structure of SiC-DPF with Gas Permeability for Emission Control

2005-04-11
2005-01-0578
The pore structure of DPF (Diesel Particulate Filter) is one of the key factors in contributing the fuel consumption and the emission control performance of a vehicle. The pressure loss of mini samples (1 in. in diameter, 2 in. in length) with various pore structures was measured at relatively low filtration velocity (< 5 cm/sec). Then the obtained data were evaluated by using an index of “permeability”. As a result, among the parameters which characterize the pore structure, it was found that the size of the pore diameter and the sharpness of pore distribution were the most contributing factors in reducing pressure loss which in turn is related to the fuel consumption performance when the cell structure was fixed. On the other hand, it was found that the gas permeability was not affected significantly by any parameter when the catalyst was coated because the coating caused a broadening of the pore distribution.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Microstructural Properties of Soot Deposits in Diesel Particulate Traps

2002-03-04
2002-01-1015
As demand for wall-flow Diesel particulate filters (DPF) increases, accurate predictions of DPF behavior, and in particular of the accumulated soot mass, under a wide range of operating conditions become important. This effort is currently hampered by a lack of a systematic knowledge of the accumulated particulate deposit microstructural properties. In this work, an experimental and theoretical study of the growth process of soot cakes in honeycomb ceramic filters is presented. Particular features of the present work are the application of first- principles measurement and simulation methodology for accurate determination of soot cake packing density and permeability, and their systematic dependence on the filter operating conditions represented by the Peclet number for mass transfer. The proposed measurement methodology has been also validated using various filters on different Diesel engines.
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
X