Refine Your Search

Topic

Author

Search Results

Journal Article

Development of a Robotic System for Automated Drilling and Inspection of Small Aerostructures

2023-03-07
2023-01-1012
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Book

Care and Repair of Advanced Composites, 3rd Edition

2020-12-31
The new edition of the well known Care and Repair of Advanced Composites, 3rd Edition, improves on the usefulness of this practical guide geared towards the aerospace industry. Keith B. Armstrong, the original lead author of the first edition was still in charge of this project, counting on the expert support of Eric Chesmar, senior composites specialist at United Airlines. Mr. Chesmar is also an active member of SAE International's CACRC (Commercial Aircraft Composite Repair Committee), an elite group of industry experts dedicated to the standardization, safety, security, and efficiency of composite repairs in the airline industry. Mr. Francois Museux (Airbus) and Mr. William F. Cole II also contributed. Care and Repair of Advanced Composites, 3rd Edition, presents a fully updated approach to the training syllabus recommended for repair design engineers and composite repair mechanics.
Technical Paper

Optimization of Automated Airframe Assembly Process on Example of A350 S19 Splice Joint

2019-09-16
2019-01-1882
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
Technical Paper

Simulation of Aircraft Assembly via ASRP Software

2019-09-16
2019-01-1887
ASRP (Assembly Simulation of Riveting Process) software is a special tool for assembly process modelling for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the assembly of airframe certain criteria on residual gap between parts must be fulfilled. The numerical approach implemented in ASRP allows to evaluate the quality of contact on every stage of assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps, and identification of hazardous areas in junction regions via ASRP software.
Technical Paper

Ranking of Thick Ice Shapes Based on Numerical Simulation for Certification

2019-06-10
2019-01-1944
The objective of this paper is to present a numerical method to rank thick ice shapes for aircraft by comparing the ice accretion effects for different icing scenarios in order to determine the more critical ice shape. This ranking allows limiting the demonstration of the aerodynamic characteristics of the aircraft in iced condition during certification to a reduced number of ice shapes. The usage of this numerical method gives more flexibility to the determination of the critical ice shapes, as it is not dependent of the availability of physical test vehicles and/or facilities. The simulation strategy is built on the Lattice Boltzmann Method (LBM) and is validated based on a representative test case, both in terms of aircraft geometry and ice shapes. Validation against existing experimental results shows the method exhibits an adequate level of reliability for the ranking of thick ice shapes.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Vibration Assisted Drilling of Aerospace Materials

2016-09-27
2016-01-2136
Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
Technical Paper

How Tools and Process Improved Diagnostic and Prognostic Reaction Time

2015-09-15
2015-01-2589
Modern aircraft, such as A380 or A350 for Airbus, are very well connected in flight to ground stations through wireless communications. For maintenance and operations purpose, the aircraft is programmed to send regularly information such as flight reports based on the BITE messages (Built-In Test Equipment) or standard reports based on the value of physical parameters. Moreover, Airbus is capable of sending requests (called uplinks) to the aircraft to retrieve the value of different parameters in almost real-time. This ability, associated with adequate process, improves significantly the reaction time of the diagnostic and prognostic solutions that Airbus can provide to its customers. Traditionally Health Monitoring is considered useful when the Potential to Functional failure (P-F) interval is greater than one flight cycle.
Technical Paper

Improvements of the PLANET System for Real-Time Satellite Data Transmission During the HAIC-HIWC Darwin Field Campaign

2015-06-15
2015-01-2147
The PLANET System was used for real-time satellite data transmission during the HAIC-HIWC Darwin field campaign (January to March 2014). The basic system was initially providing aircraft tracking, chat, weather text messages (METAR, TAF, etc.), and aeronautical information (NOTAMs) in a standalone application. In the framework of the HAIC project, many improvements were made in order to fulfill requirements of the onboard and ground science teams for the field campaign. The aim of this paper is to present the main improvements of the system that were implemented for the Darwin field campaign. New features of the system are related to the hardware component, the communication protocol, weather and tracking display, geomarkers on the map, and image processing and compression before onboard transfer.
Technical Paper

Innovative Jet Pump Ice Protection System for A400M

2015-06-15
2015-01-2136
A system has been designed for the A400M wherein engine air intake ice protection is provided by hot air bled from the engine cooled by air from inside the nacelle with a jet pump. Two variants of the system were developed. The first had an active temperature and pressure control downstream of the jet pump, and the second was without temperature control. Maximum temperature was a constraint for the design of the system since the engine air intake is manufactured in aluminum. In addition, several other constraints appeared during the detailed design of the system; the tight space allocation inside the nacelle limited the length of the jet pump, the low temperature provided by the engine bleed in flight idle limited the secondary flow used to cool the engine bleed, and the complex air distribution needed to supply air to the intake areas.
Technical Paper

A350XWB Icing Certification Overview

2015-06-15
2015-01-2111
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g.
Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Blind Bolts Developments

2011-10-18
2011-01-2755
There is an ever growing demand for blind fastener in the aerospace industry. This demand is driven not only by the advantages of single sided installation, but also by the potential to fully automate their installation process. Blind fasteners can easily be integrated with innovative end-effectors that combine drilling, installation and inspection systems, enabling the reduction of process cycle times and their associated cost savings. Clearly the advantages of single sided installation are a key benefit, but it cannot be forgotten that currently the mechanical performance of these systems is reduced compared with conventional threaded or swaged parallel shank fasteners. There are other important drawbacks existing around them which could penalise significantly the optimised design and performance of the structures. Specific key characteristics that take into account some of these drawbacks have been established by Airbus which will be referenced in this paper.
Technical Paper

EMA Aileron COVADIS Development

2011-10-18
2011-01-2729
In the frame of the COVADIS project (flight control with distributed intelligence and systems integration) supported by the DPAC and where Airbus and Sagem are partners, an electromechanical actuator (EMA) developed and produced by Sagem (SAFRAN group) flew for the first time in January 2011 as an aileron primary flight control of the Airbus A320 flight test Aircraft. With this new type of actuator, in the scope of the preparation of the future Airbus Aircraft, the perspectives of using EMA technologies for the flight control systems is an important potential enabler in the more electrical aircraft. The paper deals with the development phase of this actuator from the definition phase up to the flight tests campaign. It is focused on : COVADIS project context (flight control with distributed intelligence and systems integration), The challenges of the definition phase, Test results presentation (ground and flight).
Technical Paper

Considerations on an Integral Flight Physics Model with Application to Loads Analysis

2011-10-18
2011-01-2767
Increasing technical dependencies between the engineering disciplines driving the overall design of an aircraft and improving optimization techniques that make use of these interactions blur the lines between distinct disciplines and create demand for a harmonized flight physics model. In this paper we present considerations on a general framework that allows the representation of the equations and data from various domains in an object-oriented and scalable structure. Emphasis is put on the loads aspect with the distinct fields of gust loads, maneuver loads and ground loads analysis, which are essential for structural design. A fully generic, grid based data structure is presented, which is suitable for models of different granularity and applicability. All data is represented in this general form independent of its origin and may be transformed in between the different representations using splines. Coordinate transformations are handled automatically.
Technical Paper

Flight Test Identification Methods for Loads Models and Applications

2011-10-18
2011-01-2763
The Loads discipline contributes to the aircraft structural design by delivering shear, moment and torque (SMT, loads) all across the airframe resulting from application of aircraft airworthiness requirements as laid down in the CS 25/FAR 25 regulations and in some domestic ones. Loads computation considers the maneuver and gust conditions prescribed therein as well as other special design conditions. It is based on very detailed modeling, accounting for aerodynamics in all configurations, mass properties, flexibility of the airframe, flight control laws and retarded laws, hydraulic actuation, and specification of flight control system failure conditions. The resulting shear loads are processed and refined (e.g. nodal loads) and taken into account by the stress department for structural design.
Technical Paper

Virtual Testing for High Lift Systems

2011-10-18
2011-01-2754
Improving the verification and certification process of the high lift system by introduction of virtual testing is one of the approaches to counter the challenges related to testing of future aircraft, in terms of performing more tests of more complex systems in less time. The quality of the applied modelling methods itself and the guarantee of a completely traceable simulation lifecycle management along the aircraft development are essential. The presentation shows how existing processes for the management of all test related data have to be extended to cover the specifics of using multi body simulation models for virtual tests related to high lift failure cases. Based on a demonstrator, MSC Software GmbH and Airbus developed and are still refining the SimManager based “High Lift System Virtual Test Portal”. This portal has to fulfil on the one side global requirements like data management, data traceability and workflow management.
Technical Paper

Orbital Drilling Machine for One Way Assembly in Hard Materials

2011-10-18
2011-01-2745
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we simplify specific jigs used to maintain parts during drilling operations? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons.
X