Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Ranking of Thick Ice Shapes Based on Numerical Simulation for Certification

2019-06-10
2019-01-1944
The objective of this paper is to present a numerical method to rank thick ice shapes for aircraft by comparing the ice accretion effects for different icing scenarios in order to determine the more critical ice shape. This ranking allows limiting the demonstration of the aerodynamic characteristics of the aircraft in iced condition during certification to a reduced number of ice shapes. The usage of this numerical method gives more flexibility to the determination of the critical ice shapes, as it is not dependent of the availability of physical test vehicles and/or facilities. The simulation strategy is built on the Lattice Boltzmann Method (LBM) and is validated based on a representative test case, both in terms of aircraft geometry and ice shapes. Validation against existing experimental results shows the method exhibits an adequate level of reliability for the ranking of thick ice shapes.
Technical Paper

Reducing Energy Losses from Automotive Engine Lubricants by Thermal Isolation of the Engine Mass

2014-04-01
2014-01-0672
The thermal efficiency of an internal combustion engine at steady state temperatures is typically in the region of 25-35%[1]. In a cold start situation, this reduces to be between 10% and 20% [2]. A significant contributor to the reduced efficiency is poor performance by the engine lubricant. Sub optimal viscosity resulting from cold temperatures leads to poor lubrication and a subsequent increase in friction and fuel consumption. Typically, the engine lubricant takes approximately twenty minutes [3] to reach steady state temperatures. Therefore, if the lubricant can reach its steady state operating temperature sooner, the engine's thermal efficiency will be improved. It is hypothesised that, by decoupling the lubricant from the thermal mass of the surrounding engine architecture, it is possible to reduce the thermal energy loss from the lubricant to the surrounding metal structure in the initial stages of warm-up.
Journal Article

Optimal Control to Recover a Safe Situation from Low/High-Energy Situation in Approach

2011-10-18
2011-01-2618
The main study illustrated in this paper deals with the computation of commands which allow an aircraft to recover a nominal energy trajectory from a low/high energy state during the approach phase. The commands taken into account in this paper are the slat/flap aerodynamic control surfaces which allow the aircraft to maintain the best lift performance for low velocities during the approach phase. In this study, it is supposed that the aircraft maintains a known vertical trajectory, simplified by a constant ground slope, while no engines and airbrakes are used. A non-linear optimization approach is studied in this paper and two methods are tested: a) Hermite-Simpson, trapezoidal collocation methods, b) Sequential numerical integration method. These different methods are tested and simulation results are given for comparison, with different initial velocities permitting to change the initial energy state.
Technical Paper

Longitudinal Handling Qualities of Conventional and Unconventional Aircraft Configurations

2011-10-18
2011-01-2762
During the conceptual design phase, the aircraft stability and control derivatives (aerodynamic coefficients) can be estimated by using fast computational means. Aerodynamic potential codes like the Vortex Lattice Method (VLM) or the Doublet Lattice Method (DLM) are very easy to use and are capable of estimating these coefficients accurately as well as providing remarkable insight into wing aerodynamics and components interaction. Compared to the VLM, the DLM (originally used for aeroelastic computations) allows prediction of the steady as well as unsteady stability and control derivatives. The relationships involving these coefficients and the airplane's dynamic behaviour are well known, like for example the one relating the pitch damping derivative and the damping ratio of the Short Period mode.
Technical Paper

Sensitivity of SAE Total Pressure Intake Distortion Descriptors to Pressure Fluctuations at the Engine-Intake Interface Plane

2011-10-18
2011-01-2544
A methodology to evaluate the sensitivity of total pressure intake distortion descriptors defined by SAE ARP 1420 to individual pressure fluctuations in the Aerodynamic Interface Plane -AIP- has been developed. Individual pressure fluctuations were simulated as a white noise using a random number generator with a Gaussian distribution of known standard deviation. Monte Carlo experiments were performed perturbing different steady total pressure patterns on the AIP with random signals of different RMS values. Instantaneous distortion descriptors were calculated and statistically characterized. General correlations were obtained applying maximum value statistics to relate the maximum expected distortion increment to the RMS of the individual pressure fluctuations, the mean total pressure on the AIP and the number of samples.
Technical Paper

The Use of Vehicle Drive Cycles to Assess Spark Plug Fouling Performance

1994-02-01
940101
Spark plug fouling is a common problem when vehicles are repeatedly operated for very short periods, particularly at low temperatures. This paper describes a test procedure which uses a series of short, high-load drive cycles to assess plug fouling under realistic conditions. The engine is force cooled between drive cycles in order to increase test throughput. Spark plug resistance is shown to be a poor indicator of the effect of fouling on engine performance and the rate of misfiring is given as an alternative measure. An automated technique to detect misfires from engine speed data is described. This has been used to investigate the effect of spark plug type, fuelling level and spark timing on fouling. Spark plugs which are designed to run hotter are found to be more resistant to plug fouling. Isolated adjustments to fuelling level and spark timing calibrations within the range providing acceptable performance have a weak effect on susceptibility to plug fouling.
X