Refine Your Search

Topic

Search Results

Technical Paper

Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations

2016-09-27
2016-01-2108
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
Journal Article

Evaluation of Control Methods for Thermal Roll Forming of Aerospace Composite Materials.

2016-09-27
2016-01-2118
With increased demand for composite materials in the aerospace sector there is a requirement for the development of manufacturing processes that enable larger and more complex geometries, whilst ensuring that the functionality and specific properties of the component are maintained. To achieve this, methods such as thermal roll forming are being considered. This method is relatively new to composite forming in the aerospace field, and as such there are currently issues with the formation of part defects during manufacture. Previous work has shown that precise control of the force applied to the composite surface during forming has the potential to prevent the formation of wrinkle defects. In this paper the development of various control strategies that can robustly adapt to different complex geometries are presented and compared within simulated and small scale experimental environments, on varying surface profiles.
Journal Article

Aircraft Wing Build Philosophy Change through System Pre-Equipping of Major Components

2016-09-27
2016-01-2120
In the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
Technical Paper

Numerical Template

2015-09-15
2015-01-2489
This paper presents an innovative solution of portable drilling machine, lightweight and low cost, dedicated to drilling operations on single and double curved aircraft structure. Aircraft Standard drilling process mainly uses drilling templates combined with Automated Drilling Units (ADU) which is a very efficient solution. However, the management of templates and ADUs is a time consuming and costly task in regards to the large quantity of existing references spread over every aircraft production sites. Therefore, to help reducing those costs and also workload, the concept of the Numerical Template (NCT) has been designed, using classic and robust mechanical devices, hand-held, lightweight and universal. NCT architecture concept could led to a family of NCT with different dimensions of frame parts(X,Y,Z), fitted to the targeted area geometry. The system is able to guaranty an accuracy of ± 0.5 mm and a normality of ±0.5°.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Journal Article

Utilizing an In-Process Automatic Tool Change for Drilling and Reaming Large Diameter Holes

2011-10-18
2011-01-2532
A drill/ream cycle is necessary to produce high quality, large diameter holes in carbon-titanium stacks. Manual tool changes and traditional automatic tool changers limit hole-to-hole cycle times and hole quality. An in-process tool changer, mounted directly on the machine head, replaces a cutting tool with a reaming tool while clamp-up is maintained on the aircraft panel. By reducing or eliminating operator intervention, machine-axis moves, and optical resynchronization, an in-process automatic tool changer shortens cycle time, improves hole quality, and increases positional accuracy of holes. Automating this process also reduces risk of harm to the operator and aircraft structure.
Technical Paper

Force Feedback for Assembly of Aircraft Structures

2010-09-28
2010-01-1872
Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be programmed to achieve a certain force. This paper presents an experimental case where a compliant rib is aligned to multiple surfaces using force feedback and an industrial robot system from ABB. Two types of ribs where used, one full size carbon fiber rib, and one smaller metal replica for evaluation purposes. The alignment sequence consisted of several iterative steps and a search procedure was implemented within the robot control system.
Technical Paper

Modular and Configurable Steel Structure for Assembly Fixtures

2010-09-28
2010-01-1873
This paper will present the latest development of a configurable and modular steel construction system for use in frameworks of flexible fixtures of the kind called Affordable Reconfigurable Fixtures (ART). Instead of a dedicated aircraft fixture, which is very time consuming and expensive, the ART fixtures enable affordable construction from a standard component kit, by solving the main drawbacks of traditional tooling. In early 2009 Airbus UK built the first steel modular fixture for the aerospace industry. The project was a partnership with DELFOi and Linköping University in a project called ReFlex, Reconfigurable Flexible Tooling. A paper was presented in the last year SAE conference which explained about the project in overall. The construction system called BoxJoint has recently been tested in some manufacturing areas at Airbus UK and also been applied in the production at Saab Aerospace Linköping Sweden.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2007-09-17
2007-01-3870
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robots to conduct assembly tasks within wing boxes - an area currently inaccessible for automation. The composite, single skin construction of aircraft structures presents new assembly challenges. Currently during box close-out it is necessary for aircraft fitters to climb into the wing box through small access panels and use manual or power tools to perform a variety of tasks. In future wing designs it may be that certain parts of the wing do not provide adequate access for manual assembly methods. It is also known that these manual interventions introduce health and safety concerns with their associated costs. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. Such a development has broader implications for aircraft design and assembly.
Technical Paper

Horizontal Rivet Injector Design Used on A320 Upper Panel

2007-09-17
2007-01-3783
This paper will cover the design of the horizontal rivet injector use on the SA2 LVER designated for stage 0 production of Airbus A320 Upper Wing Panels. The injector design is intended to decrease cycle times and increase reliability while not reducing the functionality over previous rivet feed designs used by Electroimpact. Specific rivet handling methods and design features will be reviewed and their result on cycle time and reliability discussed.
Technical Paper

Lug Cutting and Trimming of the Carbon Fibre Wing Panels of the Airbus A400m with Portable Hand Positioned Tools

2007-09-17
2007-01-3795
The Airbus A400m has carbon fibre wing panels on both the upper and lower surfaces. When manufactured, these panels come supplied with various lugs on the periphery of the panel. Some are used for lifting the panel, some are used for indexing the panel; however, all lugs must be removed at some time during wing build. Lug thickness varies from 4mm to 14mm; in addition, many lugs must be cut to a 2D profile rather than just straight. The main challenge of the project was to deliver a tool that was small, portable and compact, but that could also accurately slot thick carbon fibre panels, without de-lamination, leaving a good surface finish. The solution was an air powered routing hand tool that was mechanically guided along a 2D path using a cam profile. Special diamond grit cutters were used to cut the initial slot and reduce the machining forces to a bare minimum, with the finishing cut done using a PCD router bit to obtain a good surface finish.
Technical Paper

Simply Supported Retractable Top Beam for Wing Major Assembly Jig

2006-09-12
2006-01-3127
A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2006-09-12
2006-01-3141
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robot technology suitable for conducting automated inspection and assembly tasks within wing boxes. The composite, single skin construction of aircraft structures presents new challenges for robotic assembly. During box close-out it is necessary for aircraft fitters to climb into the wing box through a small access panel and use manual or power tools to perform a variety of tasks. These manual interventions give rise to a number of health and safety concerns. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. The advantages of automating in-wing processes will be discussed. This paper presents early stage results of the demonstration snake-arm robot and outlines expectations for future development.
Technical Paper

Composite Automatic Wing Drilling Equipment (CAWDE)

2006-09-12
2006-01-3162
A custom 5-axis machine tool is constructed to enable fully automated drilling and slave-bolt insertion of composite and metallic wingbox components for a new military transport aircraft. The machine tool can be transported to serve many assembly jigs within the cell. Several features enhance accuracy, capability, and operator safety.
Technical Paper

Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry

2005-10-03
2005-01-3336
The paper details two phases of work completed by Airbus UK to create a standard deployment platform for robotic processes. The initial part of the paper focuses on an aerospace capability study developed to benchmark a number of robot models. The tests define absolute accuracies within full and restricted work envelopes, static and dynamic flexure, and temperature effects on the robot manipulator. The second part of the paper describes the development of an adaptive control process to accurately position singular or co-operating robots within a large working envelope. The solution is not dependent on complex software algorithms within the robot controller or restrictive laser metrology interfaces. The paper illustrates how a number of standard industrial products can be ‘fused together’ to provide a robust industrial solution.
Technical Paper

Panel Loaders for A380

2005-10-03
2005-01-3319
The Airbus A380 is among the largest aircraft ever built. The wing panels for the Airbus A380 are massive some being as long as 33M and weighing in excess of 4000kg. Large wing skin panels are inherently difficult to handle and the immense size of the A380 makes handling that much more difficult. The crane and wing assembly crews tasked with building these wings in Broughton UK must install and remove these panels multiple times throughout the build process. The task must be preformed accurately, safely, without damage to the wing structure, and within ever-present flow time pressures. The Airbus engineering team of Alan Ferguson, Allan Ellson, and Jim Rowe challenged Electroimpact to deliver a machine and material handling process to automate the installation and removal of wing panels within in the A380 wing assembly jig.
Technical Paper

Flex Track for use in Production

2005-10-03
2005-01-3318
Lightweight and flexible automated drilling machines are becoming more common in aerospace industry to address the increase in demand for low cost assembly solutions. Successful production implementation of the Flex Track system has been accomplished by matching applications with appropriate design features. Following the concept of small lightweight machines, which rely on local accuracy and sacrifice stiffness and shear mass, the Flex Track tackles problems on a detail level. This paper describes how the evolutionary progress of the Flex Track drilling system has and continues to address the increase in demand for low cost automated drilling systems.
Technical Paper

Sideways Collar Anvil For Use on A340-600

2005-10-03
2005-01-3300
A new method of installing LGP collars onto titanium lock bolts has been brought into production in the Airbus wing manufacturing facility in Broughton, Wales. The feed system involves transporting the collar down a rectangular cross-sectioned hose, through a rectangular pathway in the machine clamp anvil to the swage die without the use of fingers or grippers. This method allows the reliable feeding the collars without needing to adjust the position of feed fingers or grippers relative to the tool centerline. Also, more than one fastener diameter can be fed through one anvil geometry, requiring only a die change to switch between certain fastener diameters. In our application, offset and straight stringer geometries are accommodated by the same anvil.
Technical Paper

Determinate Assembly of Tooling Allows Concurrent Design of Airbus Wings and Major Assembly Fixtures

2004-09-21
2004-01-2832
Most new aircraft programs encounter the challenge of balancing the time required for design optimization with product delivery constraints. The high cost and long lead times of traditional tooling makes it difficult for aircraft manufactures to efficiently meet ever-changing market demands. The large size, low relative stiffness and high positional tolerances required for aircraft components drive the requirement for rigid fixed tooling to maintain the precision part relationships over time. Use of today’s advance 3-Dimensional CAD systems coupled with the high accuracy of CNC machines enables the success of the determinate assembly approach for aircraft tooling. This approach provides the aircraft manufacturer significant lead-time reductions while at the same time it supports enhanced system flexibility. Determinate assembly for aircraft tooling has been proven to be high successful for tooling manufacture on large-scale system such as the A380 and A340–600 wing assembly projects.
Technical Paper

Automated Wing Drilling System for the A380-GRAWDE

2003-09-08
2003-01-2940
On Airbus aircraft, the undercarriage reinforcing is attached through the lower wing skin using bolts up to 1-inch in diameter through as much as a 4-inch stack up. This operation typically takes place in the wing box assembly jigs. Manual hole drilling for these bolts has traditionally required massive drill templates and large positive feed drill motors. In spite of these large tools, the holes must be drilled in multiple steps to reduce the thrust loads, which adds process time. For the new A380, Airbus UK wanted to explore a more efficient method of drilling these large diameter holes. Introducing automated drilling equipment, which is capable of drilling these holes and still allows for the required manual access within the wing box assembly jig, was a significant challenge. To remain cost effective, the equipment must be flexible and mobile, a llowing it to be used on multiple assemblies.
X