Refine Your Search

Topic

Search Results

Technical Paper

Advanced Aluminum and Aluminum-Lithium Solutions for Derivative and Next Generation Aerospace Structures

2012-09-10
2012-01-1874
The challenging performance and affordability goals of next generation aircraft have accelerated the demand for advanced structural materials and concepts capable of achieving significant weight and cost (acquisition and operational) reduction. To meet these aggressive weight and structural maintenance reduction targets, future aircraft will require structural solutions that provide increased strength, damage tolerance and corrosion resistance. Alcoa has developed advanced aluminum alloys and third generation aluminum-lithium (Al-Li) alloys with exceptional performance and durability capability. This presentation first introduces the basic properties of the new 2xxx and 7xxx series aerospace aluminum and third generation Al-Li alloys possessing improved strength, fatigue life, crack propagation, fracture toughness, corrosion resistance, and, in the case of Al-Li alloys, reduced density and increased modulus.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2005-04-11
2005-01-0542
A co-operative program initiated by the Automotive Aluminum Alliance and supported by USAMP continues to pursue the goal of establishing an in-laboratory cosmetic corrosion test for finished aluminum auto body panels that provides a good correlation with in-service performance. The program is organized as a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee. Initially a large reservoir of test materials was established to provide a well-defined and consistent specimen supply for comparing test results. A series of laboratory procedures have been conducted on triplicate samples at separate labs in order to evaluate the reproducibility of the various lab tests. Exposures at OEM test tracks have also been conducted and results of the proving ground tests have been compared to the results in the laboratory tests. Outdoor tests and on-vehicle tests are also in progress. An optical imaging technique is being utilized for evaluation of the corrosion.
Technical Paper

Correlation between Accelerated Laboratory Tests and Field Tests for Filiform Corrosion of Painted Aluminum Alloy Sheets for Automobiles

2003-10-27
2003-01-2749
Correlation between accelerated laboratory tests and field tests for filiform corrosion of painted aluminum alloy sheets for automobile was investigated by conducting six kinds of laboratory tests with different pH, dry-wet condition, etc., and two sites of outdoor exposure tests, and vehicle test. It was found that susceptibility to filiform corrosion in the laboratory tests increased with the decrease of pH and/or the increase of repetition rate of wet/dry cycle. The susceptibility in the laboratory tests also increased with the increase of Cu contents in the alloy or with the sanding treatment before painting. The same tendency was obtained in the outdoor exposure tests and vehicle test. However, the correlation of the outdoor exposure tests and the vehicle test was low. In conclusion, the laboratory tests with relatively low wet ratio (70%) correlated well with the outdoor exposure tests, and the tests with relatively high wet ratio (95%) correlated well the vehicle tests.
Technical Paper

Development of an Improved Cosmetic Corrosion Test By the Automotive and Aluminum Industries for Finished Aluminum Autobody Panels

2003-03-03
2003-01-1235
The Automotive Aluminum Alliance in conjunction with SAE ACAP founded a corrosion task group in 2000 with a goal to establish an in-laboratory cosmetic corrosion test for finished aluminum auto body panels, which provides a good correlation with in-service performance. Development of this test involves a number of key steps that include: (1) Establishing a reservoir of standard test materials to provide a well-defined and consistent frame of reference for comparing test results; (2) Defining a real-world performance for the reference materials through on-vehicle tests conducted in the U.S. and Canada; (3) Evaluating existing laboratory, proving ground, and outdoor tests; (4) Conducting statistically designed experiments to evaluate the effects of cyclic-test variables; (5) Comparing corrosion mechanisms of laboratory and on-vehicle tests; and (6) Conducting a round robin test program to determine the precision of the new test. Several of these key steps have been accomplished.
Technical Paper

A New Approach for Robust High-Productivity Resistance Spot Welding of Aluminium

2003-03-03
2003-01-0575
Process consistency and long electrode-life are essential requirements for users of resistance spot welding (RSW) in the automotive industry. RSW is the dominant joining process for manufacturing automotive body structures from sheet materials. The technique is cost effective (particularly in high-volume production), makes joints rapidly, is easy to automate, and it has no per-joint consumables. These beneficial attributes apply equally to RSW of aluminium automotive structures. However, there has been some reluctance in the industry to embrace spot welding for aluminium. This is because the electrode-life is much shorter than that experienced when welding traditional uncoated, plain-carbon steels, and there is a general lack of confidence in the consistency of the process. This paper describes a potentially non-intrusive method that addresses these concerns.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Crashworthiness of Aluminum-Structured Vehicles

1998-05-31
986018
Today,due to concerns about the emission of greenhouse gases and the Kyoto Protocol, there is increasing interest in the use of aluminum for reducing the weight of passenger cars to reduce fuel consumption and exhaust emissions, particularly CO2. In recent years, several aluminum-structured cars have been developed and are in service in various parts of the world, all of which have met the relevant vehicle safety requirements. However, concern continues to be raised about the crashworthiness of lightweight vehicles. This paper will summarize data on the energy absorption of aluminum automotive materials and structures under impact collapse conditions as well as published information from the automotive industry on the crashworthiness of two aluminum-intensive vehicles.
Technical Paper

Aluminum Wheel Alloy Variants: Effects on Corrosion Performance

1998-02-23
980461
Previous work has shown that variations in wheel alloy chemistry, particularly with respect to copper and iron levels, can have a pronounced effect on filiform corrosion performance. In this study, an examination of A356.2 alloy chemistry variants and their effects on corrosion was carried out in greater detail. The emphasis was on copper and iron variants, both alone and in combination. Copper levels ranged from 0.005 to 0.22% and iron from 0.04 to 0.23%. The effect of manganese additions was also examined, with levels ranging from 0.002 to 0.07%. In addition to the alloying variants, the level of dispersed oxides in the castings was varied to determine any effects on corrosion performance. Although filiform corrosion performance of painted samples was the primary focus of this study, the corrosion behaviour of unpainted samples was also evaluated for comparison purposes.
Technical Paper

Methods for Assessing the Corrosion Behaviour of Heat Exchanger Materials and Components

1997-05-19
971787
To determine the true galvanic compatibility of radiator components a test has been developed using a zero resistance ammeter (ZRA) technique, which measures the magnitude of the galvanic current between different materials, thus allowing specific corrosion rates to be calculated. It is believed that the use of the ZRA technique will help provide a better balance between sacrificial behaviour and thermal performance of fin alloys. In particular, it will be demonstrated that it is not necessary to make additions of zinc to the fin alloys to attain a sacrificial effect, which in the longer term may compromise the recyclability of radiator units.
Technical Paper

Processes for the Recycling of Sheet and Other Wrought Alloys from Aluminum Intensive Vehicles

1997-02-24
970017
This paper will describe the main features of two newly-developed enabling technologies for the future establishment of an integrated system to recover the full value of the aluminum from scrapped aluminum intensive vehicles. These technologies are fluidized bed decoating and alloy sorting using analysis by laser induced optical emission spectroscopy. Aluminum Intensive Vehicles will employ substantial quantities of sheet material, most of which will have fairly heavy paint coatings and possibly adhesives. While it may be possible to remove and segregate some of the closure panels and the major aluminum castings, the main body structure will need to be shredded to facilitate both the separation of the various aluminum and other materials and also the subsequent thermal decoating of paint films and adhesives. The decoating is necessary to ensure complete pyrolysis of the coatings and to avoid the excessive dross losses encountered when as-painted scrap is remelted.
Technical Paper

How to Weld Bond Aluminium with Structural Adhesives

1997-02-24
970018
Weld bonding of aluminium autobody structures offers automotive vehicle manufacturers the opportunity of achieving significant weight reduction, compared to equivalent steel structures. Further, this is achievable using volume production manufacturing methods. This paper considers all key aspects of the weld bonding process, in particular the equipment requirements and the factors that are important in reliably achieving satisfactory structures. Methods of minimising damage to the adhesive bondline and assessment of spot weld quality are discussed. Using experience gained from extensive weld bonding trials, suitable parameters for robust weld bonding are recommended.
Technical Paper

Effects of Alloy Composition and Condition on Filiform Corrosion Performance of Cast Aluminum Wheels

1997-02-24
970021
The movement towards extended warranties in the automobile industry has focussed attention on corrosion performance of many components, particularly cast aluminum wheels. Filiform corrosion is of particular concern since it can severely affect the appearance of the wheel. The appearance and the choice of wheel design are the most attractive features to customers. In order to enhance the filiform corrosion resistance of cast aluminum wheels, cleaning, pretreatment, coating and alloy parameters are critical and need to be optimized. In this paper, the effects of alloy composition and condition on filiform corrosion are reviewed. A series of cast discs were prepared with variations in iron, zinc and copper levels around the standard A356.2 alloy composition. Apart from composition, certain specimens were subjected to different heat treatment and ageing conditions. The effects of porosity and different machining procedures were also evaluated.
Technical Paper

Reduced Finishing Costs for Aluminum Intensive Vehicles

1996-02-01
960170
Due to the inherently superior corrosion resistance of aluminum compared to automotive steels, phosphating and electrocoating are not necessarily required to provide good corrosion protection to aluminum intensive vehicles. This allows the potential for significant cost savings in the overall finishing process by eliminating these steps. Advantage can also be taken of the movement towards the use of powder primer surfacers to reduce solvent emissions in that the powder coating can be applied directly to a suitably pretreated aluminum surface. Pretreatments which are optimized for aluminum and much simpler to control than phosphating were chosen for trials based upon discussions with chemical suppliers. In this paper, the adhesion and corrosion characteristics of these selected pretreatment/powder primer systems were compared to standard phosphated and electrocoated AA6111 automotive closure sheet.
Technical Paper

The Robustness of Weld-Bonding Technology in Aluminium Vehicle Manufacturing

1996-02-01
960165
The paper summarises work which has been carried out to establish the sensitivity of the Alcan AVT weld-bonding system to manufacturing process variability. The robustness of the joint-line to factors such as panel fit-up, bondline thickness, adhesive fillet size and missing adhesive is discussed and their effects demonstrated. Manufacturing factors, such as pretreatment damage during part forming and the cure-cycle window for the adhesive, are considered and their effects on performance are indicated. Finally the effect of a series of manufacturing shortfalls and environmental factors have been put together in one experiment and the resulting strength and fatigue performance of bonded joints has been established.
Technical Paper

Composition Based Sorting of Aluminum Scrap from Aluminum Intensive Vehicles

1996-02-01
960163
The feasibility of applying laser induced optical emission spectroscopy to the high speed sorting of mixed-alloy aluminum scrap from automobiles has been established. The basic spectroscopy for analysing aluminum alloys for the major alloying elements is reviewed and key technical issues solved in developing the total sorting system are highlighted. Opportunities to apply this technology to the recycling of scrapped automobiles are discussed.
Technical Paper

The Properties and Characteristics of Two New Aluminum Automotive Closure Panel Materials

1996-02-01
960164
The need to reduce or contain a weight increase in new automobile designs is leading to the use of more and more aluminum and, in particular, to the adoption of aluminum outer body panels in a number of volume production vehicles. This has been made possible by improvements in the properties of heat treatable aluminum sheet materials and also from a better understanding of the issues related to part design and manufacturing. The alloy AA6111 has become the material of choice due to its unique combination of formability and paint bake strengthening and is used, for example, in the deck lids of the current Ford Crown Victoria, Grand Marquis and Taurus/Sable models. A modified process for this alloy has now been developed which significantly increases its paint bake strengthening and can be used either to obtain even better dent resistance or to reduce the gauge and hence obtain cost and weight savings.
Technical Paper

Anisotropy Effects in the Forming of Aluminum Sheet

1995-02-01
950702
In an effort to reduce anisotropy, which affects sheet forming performance, special actions were taken in the production of 6009-T4 sheet. To further reduce anisotropy in forming behavior, the modified 6009-T4 sheet was given an electro-discharge texture (EDT) surface topography to make friction behavior nondirectional. The modified 6009-T4 was compared to standard 6009-T4 in terms of metallurgical characteristics, laboratory test results and field forming results. The modified sheet yielded reduced planar anisotropy and improved formability. EDT completely removed directionality in friction behavior and led to an improvement in performance in the forming trials.
Technical Paper

Development of an Understanding of the Critical Factors Influencing Waterside Corrosion Behaviour of Brazed Aluminium Radiators

1994-03-01
940499
The application of aluminium alloy materials for automotive heat exchangers, including engine cooling and air conditioning systems, is now widespread. To meet the industry demands of both extended service life and improved reliability for heat exchanger components, it is important that the critical factors influencing corrosion behaviour are properly understood, particularly with the trend towards downgauging of materials. To maximise resistance to waterside corrosion, manufacturers have adopted the approach of using an internal cladding, commonly a high purity or zinc - containing alloy, to provide sacrificial protection of the core material. Recent studies have shown that the presence of an internal cladding can, under certain conditions, promote rapid localised attack of the core alloy.
X