Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Journal Article

Application of Metrology, Statistics, Root Cause Analysis, and Cost of Quality to Enable Quality Improvements and Implementation of Statistical Process Controls for Acceptance of Large Complex Assemblies

2021-03-02
2021-01-0025
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges.
Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

Liquid Water Content and Droplet Size Distribution Mass Fractions for Wind Milling Engine Fan Blade Ice Accretion Analysis

2007-09-24
2007-01-3291
A procedure for calculating the engine inlet diffuser section liquid water content and mass fractions of liquid water content associated with the water droplet size distribution for wind milling engine ice accretion analysis is presented. Critical fuel reserve calculation for extended twin-engine operation requires the determination of drag increase due to ice accretion on inoperative wind milling engine fan blade and guide vane.
Technical Paper

Designing Airplane Cabin Noise Treatment Packages using Statistical Energy Analysis

2007-05-15
2007-01-2316
Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

2007-01-17
2007-01-3888
The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

Dual Electric Spindle Retrofit for Wing Riveters

2006-09-12
2006-01-3176
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
Technical Paper

International Space Station Water Usage Analysis

2006-07-17
2006-01-2094
The International Space Station (ISS) supplies and recycles water. Until the water system loop is closed with 100 percent recycling, monitoring water usage on-orbit is critical. The water supply on-orbit is monitored to stay above the skip cycle. If the rate is higher than predicted, then the water supply may become too low to support the crew. Both U.S. and Russian water experts use the water usage rate to determine the quantity of water to be re-supplied on each vehicle. The paper provides an overview of the ISS water system. It discusses the newly revised water balance. The paper describes the methodology used to calculate water usage rates. The analysis provides the water usage rates for each Expedition crew. The analysis compares these results to the consumable reports and the Russian water expert reports. The paper provides a discussion of the results of the various usage rates. It provides the most accurate methods for assessing water usage.
Technical Paper

Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

2006-07-17
2006-01-2157
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUs) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 ± 0.5.
Technical Paper

ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project - 2006 Update

2006-07-17
2006-01-2161
The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered.
Technical Paper

Computational Fluid Dynamic Analysis of Air Flow in Node 1 of the International Space Station

2005-07-11
2005-01-2797
Proper design of the air ventilation system is critical to maintaining a healthy environment for the ISS crew. In this study, a computational fluid dynamic model was used to model the air circulation in Node 1 to identify the locations where there are low air velocities under nominal operating conditions and several reduced ventilation flow conditions. The reduced ventilation flow conditions analyzed were loss of cabin air fan, loss of inter-module ventilation from Node 1 to the US Lab, and loss of inter-module ventilation from the airlock to Node 1. For nominal operation of the ventilation system, about 5% of the node had air velocity of between 1 and 5 ft/min and 14% of the node had air velocity of between 5 and 10 ft/min. Loss of the cabin air fan and loss of Lab inter-module ventilation did not have a significant impact on the percentage of the node that would have low air circulation.
Technical Paper

Centrifuge Accommodation Module (CAM) Cabin Air Temperature and Humidity Control Analysis

2005-07-11
2005-01-2801
The Centrifuge Accommodation Module (CAM) is designed to be one of the modules of the International Space Station (ISS) for performing on-orbit science experiments over an extended period of time. The common cabin air assembly (CCAA) is utilized as the hardware for air temperature and humidity control (THC) for the CAM module cabin. The CCAA unit contains a variable speed fan, heat exchanger, temperature control valve, water separator, temperature sensor, and electrical interface box. A temperature and humidity simulation model was developed to perform the THC analysis for the CCAA unit inside the CAM. This model applies both fixed control volume and a quasi-steady-state approach for computing critical information for evaluating/assessing CCAA system performance and capabilities.
Technical Paper

Columbus Active Thermal Control Equipment Development

2005-07-11
2005-01-2769
The Columbus laboratory module for the International Space Station (ISS) uses active thermal control for cooling of avionics and payload in the pressurized compartment. The Active Thermal Control Subsystem (ATCS) is based on a water loop rejecting waste heat to the Medium Temperature Heat Exchanger and Low Temperature Heat Exchanger on Node 2, part of the US Segment of the ISS. Flow and temperature control in the ATCS is achieved by means of the Water Pump Assembly (WPA) and the 3-Way Modulating Valve (WTMO) units. For the flow control the WPA speed is commanded so that a fixed pressure drop is maintained over the plenum with the avionics and payload branches. Adjusting the WTMO internal flow split permit the two active units to perform the CHX and plenum inlet temperature control. The WPA includes a filter and an accumulator to control the pressure in the ATCS and to compensate for leakage and temperature-dependent volume variations.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2004 - 2005

2005-07-11
2005-01-2777
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2004 and February 2005. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

2005-07-11
2005-01-3079
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Technical Paper

The ATV Cargo Carrier Visual Video Target Switching Unit Thermal Design and Qualification

2005-07-11
2005-01-3120
The Visual Video Target Switching Unit (VVTSU) is the control unit dedicated to the Visual Video Target (VVT). The VVTSA, grouping VVTSU and VVT, is a “two-boxes assy”, externally located on ATV Front Cone, used to allow ATV monitoring by crewmembers inside the ISS Service Module, during the final approach up to 500 m from the docking port. Alenia Spazio is the responsible of VVTSA and in particular of the design, assembly and qualification of the VVSTU unit: an Engineering Model (for avionic tests), a Qualification Model and two Flight Units (+ 1 Spare) have been designed, assembled and verified in Torino and L’ Aquila Laboratories. The VVTSU is powered during the Rendezvous and it presents a high power dissipation, if compared with the reduced dimensions. The thermal control of this unit has been realized using passive means: a high conductive coupling with the fixation bracket, jointed with a radiator on the VVTSU top face.
X