Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Thermal System Design for a Fuel Cell Electric Truck

2023-09-14
2023-28-0020
In today’s world, due to fast depletion of fossil fuel and the increasing CO2 emission, the need to switch to alternate energy sources are higher. Stringent norms on exhaust emissions in IC Engine vehicles implies, very complex after treatment systems. Already many OEMs have refined their development strategies towards phasing out of IC Engines and bringing in Fuel Cell vehicles, Battery Electric Vehicles and Hydrogen IC Engine vehicles. Focus is on Hydrogen for Long Haul vehicles. In this paper cooling system design is demonstrated for Fuel Cell, Battery and Power Electronics system in a Heavy Duty Fuel Cell Electric Truck. Radiator and Fans are selected based on the overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. High temperature cooling system and Low temperature cooling system are explained in detail. Thermal simulation is done using simulation software KULI.
Technical Paper

Establishment of Chassis Dynamometers for Commercial Vehicles

2019-04-02
2019-01-0702
The Chassis Dynamo-meter system provides a means of testing vehicle in place of driving them on the test track or highway. The machine simulates road conditions in speed, torque or road load control modes, allowing the vehicle to experience the same forces as it would be on the test track or highway. Chassis dynamo-meter with its 24 x 7 capabilities can perform several value-added tests to assess vehicle performance while operating under load in short period of time and with other intangible benefits such as well-timed product launch, reduced breakdown time and faster failure resolution, Dynamo-meter is worthy of an investment. However, the scale of investment and constraints in required infrastructure limits the number of dynamo-meters in a R&D center of Original Equipment Manufacturers.
Technical Paper

Simulation and Experimental Study of Intake Air Flow Pulsation and Resolution for a 2-Cylinder Uneven Firing (0°-540°) Naturally Aspirated and Turbocharged CPCB II Diesel Engine

2019-04-02
2019-01-1171
Development of a 2-cylinder uneven firing engine from a 4-cylinder parent engine is associated with variation in air mass flow due to the combined effects of both engine downsizing as well the large firing gap between the cylinders especially 540°. This affects the turbocharger performance & durability and engine emissions due to fluctuations in the air mass flow. This paper investigates the effects of engine geometries such as stroke, valve overlap, cam profiles, intake and exhaust manifold configuration and surge tank effect through one-dimensional thermodynamic simulations and experimental tests, thus reducing the pulsation effect by 85%. Two engine configurations - naturally aspirated engine for 15 kVA power rating and turbocharged version for 30 kVA power rating were considered for the development study.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

Assessment of Water Injection in a Heavy Duty Diesel Engine for NOx Reduction Potential

2019-01-09
2019-26-0145
Diesel engine pollutants include Oxides of Nitrogen (NOx) and Particulate Matter (PM) which are traditionally known for their trade-off characteristics. It’s been a challenge to reduce both pollutants at the source simultaneously, except by efforts through low temperature combustion concepts. NOx formation is dependent on the combustion temperature and thus the in-cylinder reduction of NOx formation remains of utmost importance. In this regard, water injection into the intake of a heavy-duty diesel engine to reduce peak combustion temperature and thereby reducing NOx is found to be a promising technology. Current work involves the use of 1-D thermodynamic simulation using AVL BOOST for modeling the engine performance with water injection. Mixing Controlled Combustion (MCC) model was used which can model the emissions. Initially, the model validation without the water injector was carried out with experimental data.
Technical Paper

A Systematic Approach of Improving Reliability Process through Development and Application of On-Board Diagnostics System, for Commercial Vehicle

2015-01-14
2015-26-0101
This paper describes a methodology for design and development of On-Board Diagnostic system (OBD) with an objective to improve current reliability process in order to ensure design & quality of the new system as per requirement of commercial vehicle technology. OBD is a system that detects failures which adversely affect emissions and illuminates a MIL (Malfunction Indicator Lamp) to inform the driver of a fault which may lead to increase in emissions. OBD provides standard and unrestricted access for diagnosis and repair. Below given Figure 1 shows the working principle of OBD system. The exhaust emission of a vehicle will be controlled primarily by Engine Control Unit (ECU) and Exhaust Gas After Treatment Control (EGAS CU). These two control units determine the combined operating strategies of the engine and after treatment device. Figure 1 Modern Control Architecture for OBD System in Commercial vehicle [1]
Technical Paper

Driver Ergonomics in City Buses and Coaches

2014-09-30
2014-01-2424
Bus and coach drivers spend considerably more time in the vehicle, compared to an average personal car user. However, when it comes to comfort levels, the personal cars, even the inexpensive hatchbacks score much higher than a standard bus. This is because the amount of ergonomic design considerations that go into designing a car's DWS (driver workspace) is much more than that of buses. To understand this lacuna, the existing standards and recommendations pertaining directly or remotely to bus driver workspace were studied. It was understood, beyond certain elementary recommendations, there were very few standards available exclusively for buses. This paper ventures to establish a set of guidelines, exclusively for designing bus and coach driver workspace. The various systems in the driver's work space and their relevance to driver's ergonomics are discussed. References are drawn from different case studies and standards to come up with recommendations and guidelines.
Technical Paper

A Holistic Approach to Aerodynamics of Intercity and Interurban Buses

2014-04-01
2014-01-0581
The aerodynamic drag of cars, trucks and buses have been closely examined over the years. Many of them focus on the front end and to some extent on rear end of the vehicles [1]. Of course these are the two surfaces that contribute to more than 85 % of the total drag. This is because these surfaces are almost normal to the direction of air flow and hence create enormous pressure differences and hence drag. A lot of optimization has also gone into these, by way of reducing the sharp corners at ‘A’ pillars, introducing aerodynamic dome and even ‘boat tail flap plates’ [2-3] for some trailers. However, part of the vehicle that has not received sufficient attention in aerodynamic drag considerations is the ‘transverse outer profile’ of vehicle. This transverse outer profile is nothing but the cross sectional profile formed by the vehicle's sides, roof and their integration.
Technical Paper

Experimental Investigation of Effect of Speed Governors on Fuel Consumption, Emission, Noise & Safety

2013-11-27
2013-01-2763
India has the highest number of road accidents in the world. With over 130,000 deaths annually, the country has overtaken China and now has the worst road traffic accident rate worldwide. This has been revealed by the World Health Organization (WHO) in its Global Status Report on Road Safety pointing to speeding as the main contributing factor. This paper studies and details all the approaches for the reduction of accidents adopted by various countries and especially the necessity of speed governors in Indian vehicles and the role of the same in reduction in accidents with other benefits of speed governors with regard to fuel efficiency, noise & pollutant emissions both in Indian and International aspects. [Reference 7]
Technical Paper

Experimental and Finite Elemental Analysis of Bogie Suspension Mounting Brackets

2013-11-27
2013-01-2789
In mining tippers, rear suspension plays a major role in defining vehicles ride and handling characteristics, stability and load carrying capacity. Bogie type of suspension is well suited for these applications. Bogie suspension mainly consists of bogie bracket, leaf springs and radius rods. Nonlinear static analysis is performed for a bogie bracket assembly considering bolt pretension and contacts to evaluate the static strength of bogie bracket. Since bogie bracket is connected to frame with several bolts, a sensitivity analysis is carried out to study the effect of bolt loosing on bogie bracket. The surface contact interaction (stick-slip) behavior between frame and bogie suspension mounting bracket is also studied. Good correlation is achieved with testing results.
Technical Paper

Development of World's 1st Mechanical Inline Pump Engine Meeting BSIII Emission Norms with Technology of Exhaust and AT

2013-11-27
2013-01-2856
The automotive industry is one of the industries that have visibility suffered a strong demand for higher environmental performance. This industry have enjoyed years as the main source of employment and economic growth, today it is being pointed out as one of the major contributors to air pollution in urban centers. Indeed the benefits of automobile provide the means of gaining access to life's necessities and employment and a source of pleasure. However, despite these benefits there are environmental burdens as well: local air pollution, greenhouse gas emissions, road congestion, noise, mortality and morbidity from accidents and less open space to roads. Thus companies in the sector have been trying different strategies to overcome these challenges Evaluation of Emission development for commercial vehicles had always been great challenge to continuously migrate from one level of emission norm to other maintaining the business continuity.
Technical Paper

Recommendations to Curb Overloading of Vehicles in India

2013-11-27
2013-01-2766
Overloading is not only a problem for larger goods vehicles, it is equally a problem for smaller vehicles, such as vans, cars and passenger carrying vehicles. Reports indicate that nearly 70% of all traffic on national highways comprise of cargo vehicles while 22% of cargo vehicles are involved in road accidents. Overloading increases the risk of traffic accidents and causes excessive wear and damage to roads, bridges, pavements etc. This paper specifies in detail the existing Indian Legislation on Overloading, different methods of monitoring, Vehicle Overload Control in other countries and India recommendations to curb Overloading of vehicles.
Technical Paper

Evolution of Bus Design in India

2013-11-27
2013-01-2764
Buses have been main means of mass transport in organized as well as unorganized sectors in India. Though the art and science of Chassis Designing had been practiced and matured by all Indian OEMs, Body design had long not been accorded high priority by them. Till 1989, there was no comprehensive set of rules enforced. Bus designs were developed with scant regard for safety and emission. OEMs sold their products in the form of drive away chassis and the Body Design & Body Building was largely left to Body Builders, many of whom employed poor design, build and quality control practices. Spurious materials, parts, non-uniform construction resulted in number of accidents and many of them were fatal. Central Motor Vehicle Rules (CMVR) kicked-in 1st July 1989. With roll out of CMVR, various safety related features like entry/exit door, emergency exits, window frames, their locations, dimensions and designs were defined.
Technical Paper

Correlation Study of Oil Strainer Mounting Bracket for Dynamic Loading

2013-11-27
2013-01-2782
Oil strainer is used in engine oil sump, which prevents dirt, scale and other particle from clogging downstream orifice. In this paper, dynamic analysis was carried out using FEA tool. As a part of dynamic analysis, constrained modal analysis and frequency response (steady state dynamics) analysis was done. Frequency response analysis was done for different engine exciting frequency at different service load (vibration amplitude). Modal superposition method is used for doing frequency response analysis and load is applied as base excitation. The natural frequency from modal analysis and stress response from frequency response analysis is well correlated with test results. Based on achieved good correlation with test, several design modification could be carried out in CAE before finalizing the final design.
Technical Paper

Rationale behind ‘Stainless Steel Super Structure’ for Buses

2013-09-24
2013-01-2418
There have always been different approaches when it comes to ‘Bus body architecture’. The design approach has gone through different phases namely, chassis based, semi integral, integral and monocoque. Equally varied is the choice of material for bus super structure. The predominantly used ones are - mild steel with galvanization, stainless steel (SS) and aluminum. This paper discusses the rationale behind choosing stainless steel for the complete bus structure. With rapid development in infrastructure and public mass transit system, it has become imperative to have a robust structure for buses that is durable and crash worthy. Among the family of stainless steels, ferritic stainless steel exhibits excellent mechanical properties with corrosion resistance and better strength to weight ratio compared to the galvanized mild steel.
X