Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Establishment of Chassis Dynamometers for Commercial Vehicles

2019-04-02
2019-01-0702
The Chassis Dynamo-meter system provides a means of testing vehicle in place of driving them on the test track or highway. The machine simulates road conditions in speed, torque or road load control modes, allowing the vehicle to experience the same forces as it would be on the test track or highway. Chassis dynamo-meter with its 24 x 7 capabilities can perform several value-added tests to assess vehicle performance while operating under load in short period of time and with other intangible benefits such as well-timed product launch, reduced breakdown time and faster failure resolution, Dynamo-meter is worthy of an investment. However, the scale of investment and constraints in required infrastructure limits the number of dynamo-meters in a R&D center of Original Equipment Manufacturers.
Technical Paper

Remnant Life Estimation of Automotive Components by Resonance Fatigue Method

2017-03-28
2017-01-0387
In today’s commercial vehicle scenario, designing and developing a component which will never fail throughout its lifespan is next to impossible. For a long time especially in the field of automotive, any crack initiation shall deem the component as failed and the design requires further modification. This paper deals with studying the failure of one such component and understanding the effect the crack has on the overall life of the component i.e. understanding the remnant life of the component. The component under study was gear shift lever bracket and is mounted on the engine exhaust manifold. It experiences two types of loads: inertial load due to the engine vibration and gear shift load. Frequent failures were observed in the field and in order to simulate it at lab, an accelerated test approach was adopted. The engine operating speed was used to identify the possible excitation frequency which the component might experience.
Technical Paper

Driver Ergonomics in City Buses and Coaches

2014-09-30
2014-01-2424
Bus and coach drivers spend considerably more time in the vehicle, compared to an average personal car user. However, when it comes to comfort levels, the personal cars, even the inexpensive hatchbacks score much higher than a standard bus. This is because the amount of ergonomic design considerations that go into designing a car's DWS (driver workspace) is much more than that of buses. To understand this lacuna, the existing standards and recommendations pertaining directly or remotely to bus driver workspace were studied. It was understood, beyond certain elementary recommendations, there were very few standards available exclusively for buses. This paper ventures to establish a set of guidelines, exclusively for designing bus and coach driver workspace. The various systems in the driver's work space and their relevance to driver's ergonomics are discussed. References are drawn from different case studies and standards to come up with recommendations and guidelines.
Technical Paper

Experimental Investigation of Effect of Speed Governors on Fuel Consumption, Emission, Noise & Safety

2013-11-27
2013-01-2763
India has the highest number of road accidents in the world. With over 130,000 deaths annually, the country has overtaken China and now has the worst road traffic accident rate worldwide. This has been revealed by the World Health Organization (WHO) in its Global Status Report on Road Safety pointing to speeding as the main contributing factor. This paper studies and details all the approaches for the reduction of accidents adopted by various countries and especially the necessity of speed governors in Indian vehicles and the role of the same in reduction in accidents with other benefits of speed governors with regard to fuel efficiency, noise & pollutant emissions both in Indian and International aspects. [Reference 7]
Technical Paper

Effects of Standardisationon Suspension and Steering Kinematics on Diverse Vehicle Architecture

2013-11-27
2013-01-2846
Automotive industry is progressively embracing newer technology for buses, as they are increasingly becoming the backbone of urban transportation. Buses are generally classified based on floor heights, lengths, seating capacity and applications besides lot of other parameters. Generally low floor / low entry buses are used for city transportation, while high floor / high deck buses are used for inter urban and intercity transportation. Yet in a few developing and underdeveloped geographies across the globe, high deck or the semi low floor buses are still used for city/urban transportation. There could be a lot of reasons like infrastructure limitations, the cost of ownership or in some cases even the topology of these geographies could be unfriendly towards low floor buses and low ground clearances. Varying customer requirements, applications and environmental factors necessitates a broad range of offerings from any bus OEM.
Technical Paper

Recommendations to Curb Overloading of Vehicles in India

2013-11-27
2013-01-2766
Overloading is not only a problem for larger goods vehicles, it is equally a problem for smaller vehicles, such as vans, cars and passenger carrying vehicles. Reports indicate that nearly 70% of all traffic on national highways comprise of cargo vehicles while 22% of cargo vehicles are involved in road accidents. Overloading increases the risk of traffic accidents and causes excessive wear and damage to roads, bridges, pavements etc. This paper specifies in detail the existing Indian Legislation on Overloading, different methods of monitoring, Vehicle Overload Control in other countries and India recommendations to curb Overloading of vehicles.
Technical Paper

Evolution of Bus Design in India

2013-11-27
2013-01-2764
Buses have been main means of mass transport in organized as well as unorganized sectors in India. Though the art and science of Chassis Designing had been practiced and matured by all Indian OEMs, Body design had long not been accorded high priority by them. Till 1989, there was no comprehensive set of rules enforced. Bus designs were developed with scant regard for safety and emission. OEMs sold their products in the form of drive away chassis and the Body Design & Body Building was largely left to Body Builders, many of whom employed poor design, build and quality control practices. Spurious materials, parts, non-uniform construction resulted in number of accidents and many of them were fatal. Central Motor Vehicle Rules (CMVR) kicked-in 1st July 1989. With roll out of CMVR, various safety related features like entry/exit door, emergency exits, window frames, their locations, dimensions and designs were defined.
Technical Paper

Rationale behind ‘Stainless Steel Super Structure’ for Buses

2013-09-24
2013-01-2418
There have always been different approaches when it comes to ‘Bus body architecture’. The design approach has gone through different phases namely, chassis based, semi integral, integral and monocoque. Equally varied is the choice of material for bus super structure. The predominantly used ones are - mild steel with galvanization, stainless steel (SS) and aluminum. This paper discusses the rationale behind choosing stainless steel for the complete bus structure. With rapid development in infrastructure and public mass transit system, it has become imperative to have a robust structure for buses that is durable and crash worthy. Among the family of stainless steels, ferritic stainless steel exhibits excellent mechanical properties with corrosion resistance and better strength to weight ratio compared to the galvanized mild steel.
X