Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

Development of World's 1st Mechanical Inline Pump Engine Meeting BSIII Emission Norms with Technology of Exhaust and AT

2013-11-27
2013-01-2856
The automotive industry is one of the industries that have visibility suffered a strong demand for higher environmental performance. This industry have enjoyed years as the main source of employment and economic growth, today it is being pointed out as one of the major contributors to air pollution in urban centers. Indeed the benefits of automobile provide the means of gaining access to life's necessities and employment and a source of pleasure. However, despite these benefits there are environmental burdens as well: local air pollution, greenhouse gas emissions, road congestion, noise, mortality and morbidity from accidents and less open space to roads. Thus companies in the sector have been trying different strategies to overcome these challenges Evaluation of Emission development for commercial vehicles had always been great challenge to continuously migrate from one level of emission norm to other maintaining the business continuity.
Technical Paper

Advance Manufacturing Method to Meet Various Strength Requirements in CABIN Structure

2013-11-27
2013-01-2902
CABIN design is continuously undergoing a huge change for reasons of customer comfort on for meeting regulatory requirement. Consequently the strategic design process will not only consider need for high strength structures but a pragmatic research based approach utilizing the latest technology. Though cab structure is built by a sheet metal blank as per the required dimensions, some locations encounter great amounts of stress and must be designed to withstand the same in a durable way. A possible simpler practice would be to add reinforcements in the high stress area or use high strength material for the entire part. However in this approach weight and cost of the component will be increased. As the weight of the Cabin, vehicle increases this will impact fuel efficiency. Attempts have been taken like using composite materials.
Technical Paper

A Systematic Approach of Cooling System Design, Development and Application for Commercial Vehicles

2013-04-08
2013-01-1294
A methodology for design and development of commercial vehicle cooling system is derived with an objective to minimize part cost, engineering resources and time to market. This approach is very useful in companies with more variant of engines and vehicles. For this it is identified to have a common cooling system for a set of engines. A systematic approach to develop cooling system based on heat rejection is conceptualised. Engines are classified based on heat loads in to various groups. The cooling package selected for a particular group is independent of type of vehicle (bus or truck), cab (day, sleeper, FES or FBS), Type of drive (LHD or RHD), Emission norm (BSIII or BSIV) and fuel (Diesel or CNG). These packages will cover up the entire range of vehicles and engines. The packaging space available for each group is derived and the cooling package size is finalised. Fan and fan pulley options are listed based on air flow and fuel efficiency requirements.
X