Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Bogie Wear Pad - A Comparative Study

2021-09-22
2021-26-0442
Bogie-type suspensions for trucks are comprised of two axles and a central spring pack on each side of the truck chassis. Bogie suspensions have a good load distribution between the axles and are used for severe applications in trucks, in off-road conditions thereby subjecting them to extreme stain and load. In today’s competitive market scenario, it of utmost importance to minimize down time in commercial vehicles as it directly corresponds to loss in business which leads to customer dissatisfaction. It is therefore essential to optimize and select the right material for each component in the bogie suspension system. This paper deals with the material selection and testing of one such component - Bogie Wear Pad. The bogie wear pad undergoes sliding friction throughout its lifetime during loading and unloading of bogie suspension. Three different materials are selected and their wear is measured under the same conditions of loading.
Technical Paper

Field Failure Simulation of a Non-reactive Suspension Tie Rod for Heavy Commercial Vehicle Using a Road Simulator

2019-01-09
2019-26-0350
The suspension system in a vehicle isolates the frame and body from road shocks and vibrations which would otherwise be transferred to the passengers and goods. Heavier goods vehicles use tandem axles at the rear for load carrying. Both the axles should be inter-connected to eliminate overloading of any one axle when this goes over a bump or a ditch. One of the inter-connecting mechanism used is leaf spring with tie rod, bell crank & linkages, when the first rear axle moves over a bump, the linkages equalize the loading on the second rear axle. This paper details about the failure analysis methodology to simulate the tie rod field failure using a six poster road simulator and to identify the root cause of the failure and further corrective actions.
Technical Paper

Assessment of Water Injection in a Heavy Duty Diesel Engine for NOx Reduction Potential

2019-01-09
2019-26-0145
Diesel engine pollutants include Oxides of Nitrogen (NOx) and Particulate Matter (PM) which are traditionally known for their trade-off characteristics. It’s been a challenge to reduce both pollutants at the source simultaneously, except by efforts through low temperature combustion concepts. NOx formation is dependent on the combustion temperature and thus the in-cylinder reduction of NOx formation remains of utmost importance. In this regard, water injection into the intake of a heavy-duty diesel engine to reduce peak combustion temperature and thereby reducing NOx is found to be a promising technology. Current work involves the use of 1-D thermodynamic simulation using AVL BOOST for modeling the engine performance with water injection. Mixing Controlled Combustion (MCC) model was used which can model the emissions. Initially, the model validation without the water injector was carried out with experimental data.
Technical Paper

Pass by Noise Reduction on an Intermediate Commercial Vehicle

2018-06-13
2018-01-1535
A major activity of any new vehicle development program, is to meet legal requirements of local markets. Pass by noise (PBN) test is one of the standardized tests and is used to certify new vehicles/variants for their Noise emissions. Certification for noise emissions of commercial vehicles is achieved by measuring external sound levels according to procedures defined by standards such as IS: 3028 for Indian market. Before a physical proto-vehicle is assembled, various systems and subsystems are readily made available by suppliers off the shelf. During final design validation of the vehicle by mule-vehicle testing, PBN target compliance need be assured for all these systems in order to meet overall PBN target. The PBN on an Intermediate commercial vehicle (ICV) migrated to the latest Exhaust emission standard, was the subject of this study. This vehicle emitted PBN greater than accepted threshold.
Technical Paper

Durability Studies on Gas Engine Oil along with Performance and Emission Characteristics of Heavy Duty Turbocharged Natural Gas Powered Engine

2018-04-03
2018-01-0638
Natural gas has been considered and implemented as alternative fuel to gasoline and diesel powered vehicles worldwide. Although natural gas belongs to petroleum fuel family, it has considerable recourses worldwide to ensure long energy security and comparatively lower carbon to hydrogen ratio that make it more environment friendly. This paper presents the effect of long duration endurance test on gas engine oil along with performance and emission characteristics of 5.8 L turbocharged heavy duty natural gas engine. The six cylinder engine was chosen due to its importance for urban bus transportation. The engine was subjected to long duration endurance test of 800 hrs with closed loop monitoring and controlled conditions as per 6 mode engine load cycle. During the complete endurance test of 800 hours, performance and emission characteristics of the engine were analyzed after completion of every 100 hours as per Full Throttle Performance Test and European Transient Cycle (ETC).
Journal Article

Initial Development of a E85 Fueled, Multi Cylinder, Turbocharged, Spark Ignited, Heavy Duty Engine

2017-01-10
2017-26-0075
E85 (85% Ethanol + 15% Gasoline), as an alternative fuel has been widely used in spark ignited engines used in light duty vehicles. However, they are rarely used in spark ignited heavy duty engines. In this study, we used E85 in a 5.8 litre, multi cylinder, turbocharged, multi point - port injected, spark ignited heavy duty engine, to analyze the performance capability. As E85 has higher octane rating, the compression ratio was increased to 11.5:1. Experimental investigation of In-cylinder pressure was done and the engine’s ignition timing and injection duration was calibrated to operate the engine below peak firing pressure limits, without knocking. The experimental results showed that exhaust gas recirculation resulted in lower peak firing pressure and rate of heat release. The results of the engine test showed that E85 can be used in heavy duty spark ignited engines. The scope for future work is on addressing the higher BSFC and cold start from subzero temperature levels.
Technical Paper

Effects of Steering System Friction and Jacking Force on On-Center Driving Performance in a Commercial Vehicle

2017-01-10
2017-26-0339
In heavy commercial vehicle segment in India, driver comfort and feel was largely ignored. Fierce competition in the recent years and buyer’s market trend is compelling the designers of heavy truck to focus more on the finer aspects of attribute refinements. Steering is one driver-Vehicle interface which the driver is engaged throughout. Comfort and feel in steering wheel is defined by parameters like steering effort, manoeuvrability, on-center feel & response, cornering feel & response, Torque dead band, return-ability etc. and is influenced by a long list of components and systems in the truck. This study focuses on the influences of jacking torque and steering system friction on the on-center driving performance. Experiments to measure the Jacking torque and steering system friction were conducted in the lab and subjective and objective assessments of on-center driving performance were later conducted at test track in two similar 12 Ton truck to correlate their effects.
Technical Paper

Resolution of Engine Oil Mixing with Power Steering Oil in Steering Pump by Behavioral Study

2015-09-29
2015-01-2720
Steering gear box function is one of the important requirements in heavy vehicles in order to reduce driver fatigue. Improper functioning of steering gear box not only increases the driver fatigue, also concerns the safety of the vehicle. In this present investigation, the engine oil mixing up with steering oil has been identified and steering gear box failure has been observed in the customer vehicle. The root cause of failure has been analyzed. Based on the investigations, in particular design of steering pump has been failed at customer end. The same design of steering pump were segregated and analyzed. Initial pressure mapping study has been conducted. The pressure mapping results revealed that the cavity pressure obstructs the flow of suction pressure. It indicates that obstacle at suction port due to the existence of internal leakage that causes back pressure in the internal cavity of steering pump which sucks engine oil.
Technical Paper

Characterizing Steering Feel and Response with Objective Metrics in Commercial Vehicles

2015-09-29
2015-01-2766
Steering wheel being the most used tactile point in a vehicle, its feel and response is an important factor based on which the vehicle quality is judged. Engineering the right feel and response into the system requires knowledge of the objective parameters that relate to the driver perception. Extensive correlation work has been done in the past pertaining to passenger cars, but the driver requirements for commercial vehicles vary significantly. Often it becomes difficult to match the right parameters to the steering feel experienced by the drivers, since most of the standard ISO weave test units used to describe them are of zero or first order parameters. Analyzing the second order parameters gave a better method to reason driver related feel. Also, each subjective attribute was fragmented into sub-attributes to identify the reason for such a rating resulting in the identification of the major subjective parameters affecting driver ratings.
Technical Paper

Failure Analysis and Design Optimisation of Steering Linkage Pivot Shaft of Commercial Vehicle

2015-09-29
2015-01-2726
Commercial vehicles have steering systems with one or more steering links connecting the steering gear box pitman arm and front axle steering arm. In case of twin steer vehicles, intermediate pivot arm is used to transfer the motion proportionately between the two front axles. Intermediate pivot arm is also used in some longer front over-hang vehicles to overcome their packaging constraints and to optimize the mechanical leverage. The pivot shaft is a mechanical part of the intermediate pivot arm assembly upon which pivot arm can swivel in one axis. Steering forces transferred through the drag links generates resultant forces and bending moments on the pivot shaft. In this work, study has been carried out on premature failure of the pivot shaft in city bus application model (Entry + 1 step). Metallurgical analysis of failed part indicated the failure to be due to fatigue. Pivot shaft was tested in rig with similar load conditions in order to replicate the failure.
Technical Paper

Vehicle Handling Sensitivity Analysis through Numerical Simulation in Commercial Vehicles

2015-09-29
2015-01-2736
Vehicle handling is an important attribute that is directly related to vehicle safety. The rapid development of road infrastructure has resulted in a greater focus on safety and stability. Commercial vehicle stability and safety assumes higher significance because of high center of gravity (CG) and heavier loads. A gamut of parameters influence vehicle handling directly and indirectly. However, it is quite difficult to gauge through physical testing, the extent of each parameter's influence on handling. Therefore, this paper examines vehicle handling by way of a sensitivity analysis through numerical simulation. A prototype vehicle is also instrumented and tested to confirm trends and validate the results of the simulation. An Intermediate Commercial Vehicle (ICV) with Gross Vehicle Weight (GVW) of around 13 tonnes is modeled and parameters like wheelbase and tyre stiffness are altered and the effect of these changes on handling parameters (yaw rate, lateral acceleration) is observed.
Technical Paper

A Systematic Approach of Improving Reliability Process through Development and Application of On-Board Diagnostics System, for Commercial Vehicle

2015-01-14
2015-26-0101
This paper describes a methodology for design and development of On-Board Diagnostic system (OBD) with an objective to improve current reliability process in order to ensure design & quality of the new system as per requirement of commercial vehicle technology. OBD is a system that detects failures which adversely affect emissions and illuminates a MIL (Malfunction Indicator Lamp) to inform the driver of a fault which may lead to increase in emissions. OBD provides standard and unrestricted access for diagnosis and repair. Below given Figure 1 shows the working principle of OBD system. The exhaust emission of a vehicle will be controlled primarily by Engine Control Unit (ECU) and Exhaust Gas After Treatment Control (EGAS CU). These two control units determine the combined operating strategies of the engine and after treatment device. Figure 1 Modern Control Architecture for OBD System in Commercial vehicle [1]
Technical Paper

Design and Development of Bimetal Brake Drum to Improve Heat Dissipation and Weight Reduction

2014-09-30
2014-01-2284
Automotive component light weighing is one of the major goals for original equipment manufacturers (OEM's) globally. Significant advances are being made in developing light-weight high performance components. In order to achieve weight savings in vehicles, the OEM's and component suppliers are increasingly using ultra-high-strength steel, aluminum, magnesium, plastics and composites. One way is to develop a light weight high performance component through multi material concept. In this present study, a bimetal brake drum of inner ring cast iron and outer shell of aluminum has been made in two different design configurations. In two different designs, 40 and 26% weight saving has been achieved as compared to conventional gray cast iron brake drum. The component level performance has been evaluated by dynamometer test. The heat dissipation and wear behavior has been analyzed. In both designs, the wear performance of the bimetal brake drum was similar to the gray cast iron material.
Technical Paper

Effect of Hydrogen on the Performance & Emission Characteristics of a 6.0 L Heavy Duty Natural Gas Engine

2014-09-30
2014-01-2431
In this paper, experimental evaluation was carried out on a 6.0 L heavy duty CNG engine which has been optimized for 18 percent hydrogen blended CNG (HCNG). Optimization test results shows that use of HCNG results in reduced CO, THC & CH4 emissions by 39, 25 & 25 percent respectively and increase in NOx by 32 percent vis-a-vis CNG. After optimization the engine was subjected to endurance test of 600 hours as per 15 mode engine simulated city driving cycle with HCNG. The performance & emission characteristics of the engine were analyzed after completion of every 100 hours as per European Transient Cycle (ETC). Test results indicate that there were no significant changes observed in engine power output over the complete endurance test of 600 hrs with HCNG. Specific fuel consumption (SFC) measurements were consistent at all the 15 modes of engine simulated city driving cycle.
Technical Paper

Bogie Suspension Noise Reduction on a Commercial Vehicle

2013-09-24
2013-01-2382
The Bogie suspensions ensure better stability at higher loads and also give the utmost reliability under extreme climatic conditions with minimum maintenance. Many vehicle manufactures have adopted for the bogie suspension at rear based on its advantages. The noises generated from the vehicle in the field includes engine noises and flow noises and hence it is very difficult to clearly discern the noise generated from suspension system of the vehicle [1]. Most suspension system noises do not come from a single part but they are caused by the coupling action between related parts, making it difficult to clearly identify the exact cases. This paper details the overall approach to identify the bogie suspension noise on a commercial vehicle and countermeasures to reduce the same.
Technical Paper

Evaluation of Structural Strength of Flatbed Trailer for Service Loading Conditions

2013-09-24
2013-01-2368
Commercial vehicle payload depends on the client for which the vehicle fleet owner is operating. Load carriers like flatbed trailer offer the flexibility to be loaded with a large number of light payloads or a few numbers of massive payloads. Such load carriers have to be evaluated for various possibilities of loading patterns that could happen in the market. The objective of this work is to evaluate flatbed trailer for its structural strength for different customer application cases, using computer simulation. Structural load cases due to payloads like containers, steel coils and cement bags are arrived at. Static structural analysis using MSC Nastran is performed to evaluate for the worst customer loading pattern from structural stress point of view. This paper also describes a simplified method for simulating the effect of trailer suspension, tractor suspension and the fifth-wheel coupling in the analysis whose detailed modeling is not possible at the concept level.
Technical Paper

A Study of Sound Source Characteristics for Vehicle Airborne Transfer Function Measurement

2013-09-24
2013-01-2343
Transfer function measurements are the basis for construction of conventional test based source-path-receiver model of a vehicle. Interior noise of a vehicle can be synthesized using source excitation (both acceleration at source and near source sound pressure level) and its corresponding transfer function (Vibro-Acoustic Transfer Function (VATF) and Acoustic Transfer Function (ATF) respectively) to the interior of vehicle. Ideally ATF should be linear and independent of sound source, dependent only on size of air cavities, body structure and its material characteristics in between receiver and source location. But practically because of the type of excitation signal used to excite the sound source and characteristics of sound source itself, there is a possibility of variations in amplitude of acoustic transfer function.
X