Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Thermal Characterization of Lithium-Ion Batteries under Varying Operating Conditions

2024-04-09
2024-01-2667
Despite the widespread adoption of lithium-ion batteries in various applications such as energy storage, concerns related to thermal management have been persisting, primarily due to the heat generated during their operation and the associated adverse effects on its efficiency, safety, and lifetime. Hence, the thermal characterization of lithium-ion batteries is essential for optimizing the layout of the battery cells for a pack design and the corresponding thermal management system. This study focuses on an experimental investigation of heat generation of Li-ion batteries under different operating conditions, including charge-discharge rates, ambient temperatures, states of charge, and compressive pressure. The experiments were conducted using a custom-designed multifunctional calorimeter, enabling precise measurement of the heat generation rate of the battery and the entropy coefficient. The measured results have shown a good match with the calculated heat generation rate.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Technical Paper

Analysis of Energy Recovery System of Formula One Cars

2021-04-06
2021-01-0368
This study analyzes the performance of the Energy Recovery System (ERS) of a Formula One car (F1) based on the qualification performance of 19 drivers for the first calendar race of the 2019 FIA Formula One World Championship®. In this study, the race circuit analysed was split into different sectors to examine the energy transfer between the Motor Generator Unit-Kinetic (MGU-K) and the Energy Storage (ES) systems. Positive Kinetic Energy (PKE) concept was used for estimating the energy deployment potential of the ERS along with numerical simulations for estimating the energy recovering potential. This investigation highlights the strategies used by different drivers and the effect of driver to driver variation on their ERS performance during qualification. The methodology demonstrated in this study is able to identify the correlation between the unique driving style of individual drivers and the ERS strategies used by the teams for maximizing the performance of their car.
Technical Paper

A Method for Simultaneous State of Charge, Maximum Capacity and Resistance Estimation of a Li-Ion Cell Based on Equivalent Circuit Model

2020-04-14
2020-01-1182
Accurate estimation of the State of Charge (SOC), maximum capacity (Qmax) and internal resistance (R0) are essential for efficient battery monitoring, which is an important part of the battery management system. SOC provides information regarding the instantaneous status of the battery system, while Qmax is a key indicator of the long-term State of Health (SOH) of the cell, which represents the abilities of a battery to store energy and retain charge over extended periods. In addition, the internal resistance is also required to predict the peak available power. Traditional methods use complex models and look-up tables that have high computation requirements and are thus unsuitable for online applications. In this paper, we propose a simple method for simultaneous SOC, Qmax and internal resistance estimation based on a second-order equivalent circuit model (ECM).
Journal Article

Design of a Calorimeter for Measurement of Heat Generation Rate of Lithium Ion Battery Using Thermoelectric Device

2017-03-28
2017-01-1213
Analysis of thermal behavior of Lithium ion battery is one of crucial issues to ensure a safe and durable operation. Temperature is the physical quantity that is widely used for analysis, but limited for accurate investigations of behavior of heat generation of battery because of sensitivities affected by heat transfer in experiments. Calorimeter available commercially is widely used to measure the heat generation of battery, but does not follow required dynamics because of a relatively large thermal time constant given by cavity and a limited heat transfer capability. In this paper, we proposed a highly dynamic calorimeter that was constructed using two thermoelectric devices (TEMs). For the design of the calorimeter and its calibration, a printed circuit board (PCB) with the same size as the battery was used as a dummy load to generate controlled heat.
Technical Paper

Progressive Weight Mechanism for Baja SAE Traction Events

2006-12-05
2006-01-3625
A feature of Baja SAE, and other off-road racing series, is a dynamic traction event. Usually some sort of pull-test device is towed in this event, and design of this device has a controlling influence on the performance capability of each vehicle in the field. Pull-test devices are usually designed to be progressive so that starting is easy, but the pulled load gets higher the further the tow proceeds. Pull-test devices must also be mechanically designed to suit the efficient operation of the traction event (hitching and resetting). This paper develops the operating and design theory of a new pull-test device, the log pull.
Technical Paper

Analyzing and Simulating Brake Rotor Temperatures: A Technique Applied to a Formula SAE Vehicle

2006-01-01
2006-01-1974
Many lightweight vehicles use non-ventilated (also called vane-less or solid) iron alloy rotors in their vehicle braking systems both on the front and rear wheels. This solid rotor configuration is also common on the rear wheels of many full size production vehicles. This paper's object is to identify the heat transfer coefficients of such a solid brake disc arrangement using different experimental methods and then show how this information can be used both as a design tool and a simulator to predict temperatures in unknown or untested conditions.
Technical Paper

Analysis of Fuel Cell/Battery– Capacitor Hybrid Sources Used for Pulsed Load Applications

2002-10-29
2002-01-3219
This paper presents theoretical and experimental analyses used to evaluate the behavior of a capacitor-based hybrid source while supplying a pulsed current load. A PEM fuel cell and a variety of battery types were tested in the laboratory for their capability to supply a pulsed load. The capacitors used during testing were found to be effective in reducing the fuel cell/battery current. Experimental test results show that using low-ESR capacitors can reduce voltage deviations. Test results also show that a capacitor-based hybrid is a promising power source for supplying a pulsed current load.
Technical Paper

Modeling Double-layer Capacitors Using AC Impedance Measurements

1999-08-02
1999-01-2540
AC impedance measurements have been taken for five different double-layer capacitors (DLCs) operating at different DC bias levels. Using these measurements, circuit parameters for different DLC equivalent circuits have been determined. The effect of DC bias on the circuit parameters has been investigated. Variations in manufacturing were also examined. Equivalent circuit parameters were calculated for a small group of 50F DLCs and then compared. The equivalent circuit parameters varied about 10% over the sample set.
X