Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Structured Approach to the Development of a Logical Architecture for the Automotive Industry

2024-04-09
2024-01-2048
The automotive industry is currently experiencing a massive transformation, one like it has not quite seen in the past. With the advent of highly software-driven, always on, connected vehicles, the automotive industry is experiencing itself at a crossroads. While the traditional component-driven design approach to vehicle development worked in the favor of the industry for decades due to vehicles being mostly mechanical in nature, the industry now finds itself struggling to develop well-integrated vehicle solutions with the large dependency on software systems. The fast-paced nature of the software world makes it imperative to approach the development of automobiles from a Systems Engineering perspective. A function-based approach to the development of vehicle architectures can ensure cohesive systems development and a well-integrated vehicle.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Connected Vehicle Data Applied to Feature Optimization and Customer Experience Improvement

2024-01-08
2023-36-0109
In a recent time, which new vehicle lines comes with a huge number of sensors, control units, embedded technologies, and the complexity of these systems (electronics, electrical and electromechanical parts) increases in an exponential way. Considering these events, the expressive generated data amount grows in the same pace, so, consume, transform, and analyze all these data to better understand the modern customer, their needs and how they use the car features becomes necessary. Through that scenario, connected vehicles developed by Ford Motor Company has been generating opportunities to feature’s improvement and cost reduction based on data analysis. This growing quantity of data might be used to optimize feature systems and help engineering teams to understand how the features have been used and enhance the systems engineering design for new or existing features.
Technical Paper

Time-Domain Explicit Dynamic CAE Simulation for Brake Squeal

2023-05-08
2023-01-1061
Disc brake squeal is always a challenging multidisciplinary problem in vehicle noise, vibration, and harshness (NVH) that has been extensively researched. Theoretical analysis has been done to understand the mechanism of disc brake squeal due to small disturbances. Most studies have used linear modal approaches for the harmonic vibration of large models. However, time-domain approaches have been limited, as they are restricted to specific friction models and vibration patterns and are computationally expensive. This research aims to use a time-domain approach to improve the modeling of brake squeal, as it is a dynamic instability issue with a time-dependent friction force. The time-domain approach has been successfully demonstrated through examples and data.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Model Based Systems Engineering Application in Automotive Industry

2023-04-11
2023-01-0091
Auto industry has faced constant challenges in the economic, technology and global trend in the recent years. This is changing the corporative mindset to find creative and innovative processes and methods to evolve the product development system to adjust and deliver competitive products that satisfy customers expectations. Integrating the work from different teams in an organization has been moving from simple roles and responsibilities definition with effective communication channels to a new vision where teamwork progresses in harmony and embraces change to satisfy customers as part of the process. The path to evolve work in engineering that relies on several computational tools continues. In this article, it is presented an integration of different tools to manage vehicle program changes using model-based systems engineering, the present work improves the reaction capabilities of the teams and enables to adjust to changes in the development of a vehicle.
Technical Paper

Synergizing Artificial Intelligence with Product Recall Management Process

2023-04-11
2023-01-0867
There are a multitude of dynamics faced by any industry. There is also a consistent search and development of technological platforms and services to address these changes. This necessitates a shared work philosophy which involves multiple stakeholders. Verification and validation are integral part of any development irrespective of product, process, or services. Also, every industry has a regulatory compliance to adhere too. But the extent of complexity and the level of dependencies or interactions between modules as well as stakeholders involved, creates slippage at some or other level. Nowadays the industries are also driven by reuse for cost effectiveness. Though it marks the significant improvement in the capability to compete, compatibility is a key measure to a successful product or service launch and sustainability.
Technical Paper

Investigation of Horizontal Light Function Positions on the Distance Estimation by Test Persons to Ensure Road Safety

2023-04-11
2023-01-0918
When designing new vehicles, the legal requirements of the countries in which the vehicles are homologated must be observed and implemented. The manufacturers try to consider the legal framework of the UN-ECE (United Nations Economic Commission for Europe), CCC (China Compulsory Certification) and FMVSS (Federal Motor Vehicle Safety Standard) 108 in the same vehicle to keep the variance low. For the appearance of the vehicle, the position of the light modules in the front of the vehicle is important. In addition to the surface requirements of lighting functions, the positions of the low beam (LB), high beam (HB) and the position of daytime running lights (DRL) are also regulated. When it comes to these mounting positions, the legislation between the US and the EU differs quite significantly.
Technical Paper

A Dynamic Tire Concept Model for Early Phases of Ride Comfort Development

2023-01-03
2023-01-5002
In order to correctly predict the impact of tire dimensions and properties on ride comfort in the early phases of the vehicle development process, it is necessary to fully understand their influence on the dynamic tire behavior. The currently existing models for reproducing tire forces often need many measurements for parametrization, simplify physical properties by empiric functions, or have an insufficient simulation speed to analyze many variants in the short periods of early process phases. In the following analysis, a tire concept model is presented, which utilizes relations between the static and dynamic behavior of tires in order to efficiently predict the dynamic forces in the vertical and longitudinal direction during obstacle crossing. The model allows for efficient parametrization by minimizing the number of parameters as well as measurements and ensures a high simulation speed. To realize this, initially, a selection of tires is measured on a tire test rig.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

Reduced Order Metamodel Development Framework for NVH

2022-03-29
2022-01-0219
During the design conception of an automobile, typically low-fidelity physics-based simulations are coupled with engineering judgement to define key architectural components and subsystems which limits the capability to identify NVH issues arising from systems interaction. This translates to non-optimal designs because of unexplored design opportunities and therefore, lost business efficiencies. The sparse design information available during the design conception phase limits the development of representative higher fidelity physics-based simulations. To address that restriction on design optimization opportunities, this paper introduces an alternate approach to develop reduced order predictive models using regression techniques by harnessing historical measurement and simulation data. The concept is illustrated using two driveline NVH phenomenon: axle whine and take-off shudder.
Technical Paper

Investigations on Visibility of Digital Road Projections

2022-03-29
2022-01-0799
This paper covers research findings on digital projections on the road. Data is provided for the root cause analysis of non-existing distraction proven by several studies. The study describes if and in which geometrical space road projections are visible to other road traffic participants. Such participants can be e.g. oncoming, passing drivers or pedestrians standing aside the road. The paper data shows where projections are recognizable and assignable to the original intention of the projection. A grid was created to identify the areas where digital projections could be understood and where the digital projections were just illegible. A dominant factor is the grazing incidence. The photons are distributed over a larger area and only the driver’s view makes a virtual compression of the illuminated area in order to make the signals legible. The results show that distraction for other road participants is unlikely for any position outside very limited areas.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
The current automotive electronic and electrical (EE) architecture has reached a scalability limit and in order to adapt to the new and upcoming requirements, novel automotive EE architectures are currently being investigated to support: a) an Ethernet backbone, b) consolidation of hardware capabilities leading to a centralized architecture from an existing distributed architecture, c) optimization of wiring to reduce cost, and d) adaptation of service-oriented software architectures. These requirements lead to the development of Zonal EE architectures as a possible solution that require appropriate adaptation of used security mechanisms and the corresponding utilized hardware trust anchors. 1 The current architecture approaches (ECU internal and in-vehicle networking) are being pushed to their limits, simultaneously, the current embedded security solutions also seem to reveal their limitations due to an increase in connectivity.
Technical Paper

Illuminated Vehicle Logos - Investigation on Potential Distraction and Their Influence on Road Safety

2022-03-29
2022-01-0797
The current development of automotive lighting strives towards more and more lighting installations on vehicles. Additionally, to that, manufacturers start animating these lighting installations as coming home or leaving home greetings from the car to the driver. In a previous paper we have shown, that these additional animations are in fact not distracting to other road users and when used correctly, e.g. in a sequential turn indicator, can be beneficial to the overall traffic safety. This study then aims to investigate the potential influence of illuminated logos on road safety. European lawmakers forbid the use of illuminated advertisements on vehicles to minimize the danger of distraction for other road users and thereby negatively influencing traffic safety. As of now, active illumination of the manufacturer’s logo is considered an advertisement.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Technical Paper

Model in the loop for training purpose

2022-02-04
2021-36-0014
The automotive industry is passing for a big transformation, due to technologies advance. The electrical technologies are also on a good rising curve, calling the attention of the Original Equipment Manufacturer (OEMs). This scenario generates the demand for a faster method to train their new hired engineers, when compared with usual on the job training. Model in the Loop (MiL) consists in one of the real-time embedded systems test phases, which is developed in a computational environment, performing a mathematical modeling of the system, presenting an interface that allows the visualization of its dynamics and the signals involved. Two powerful software in industry that apply MiL are the Matlab and Simulink. A project involving these applications was proposed for a team of new hired engineers, developing models of several vehicle Electronic Control Units (ECUs), with some scope reduction as an example the functional requirements reduction.
Technical Paper

A Novel Optimization Model for Equipment Capacity Planning with Total Number of Assets and Changeover Minimization

2021-06-16
2021-01-5064
Capacity planning is one of the major factors in saving capital and avoiding unnecessary costs in any manufacturing system particularly large original equipment manufacturers (OEMs). However, many manufacturing systems still suffer from huge costs incurred due to a lack of applying a robust capacity planning optimization model. Most of the developed models in literature do not consider real-life situations in manufacturing systems and, hence, are not easy to implement. In this paper, a novel capacity planning optimization model considers various important features of a manufacturing system. The objective function of the model is to minimize the weighted sum of the total number of assets and changeovers. A unique feature of the developed model is the capability of providing the number of additional required assets of each type in case the existing assets are not capable of covering the entire demand.
X