Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Experimental Heat Flux Analysis of an Automotive Diesel Engine in Steady-State Operation and During Warm-Up

2011-09-11
2011-24-0067
Advanced thermal management systems in passenger cars present a possibility to increase efficiency of current and future vehicles. However, a vehicle integrated thermal management of the combustion engine is essential to optimize the overall thermal system. This paper shows results of an experimental heat flux analysis of a state-of-the-art automotive diesel engine with common rail injection, map-controlled thermostat and split cooling system. Measurements on a climatic chamber engine test bench were performed to investigate heat fluxes and energy balance in steady-state operation and during engine warm-up from different engine start temperatures. The analysis includes the influence of the operating point and operating parameters like EGR rate, injection strategy and coolant temperature on the engine energy balance.
Technical Paper

Influence of Injection Nozzle Hole Diameter on Highly Premixed and Low Temperature Diesel Combustion and Full Load Behavior

2010-10-25
2010-01-2109
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
Technical Paper

Dual Line Exhaust Design Optimisation to Maximize SCR Catalyst Efficiency thru Improved Ammonia Distribution

2009-04-20
2009-01-0914
The SCR after treatment system is already in production for passenger car engines with a single exhaust system. In this case, the exhaust system has to be designed very carefully to optimize the Ammonia distribution on the catalyst and therefore the DeNOx potential. The application to V8 engines with two turbochargers delivering the gas into two separated DOC & DPF units is an additional challenge. This paper describes the different optimization steps of such an exhaust system and the tools used during this work. After a design phase to integrate the SCR system in the exhaust geometry, a first CFD study was conducted to evaluate the performance of the basic system using one or two urea injectors. An optimization of the connection of the two tubes, directly in front of the SCR catalyst, has been designed using further CFD calculations as well as a marker gas SF6 on a cold flow bench.
Journal Article

Particulate Filter Design for High Performance Diesel Engine Application

2008-06-23
2008-01-1747
A catalyzed ceramic filter has been used on diesel engines for diesel particulate matter emission control. A key design criteria for a diesel particulate filter is to maximize DPF performance, i.e. low back pressure and compact size as well as near continuous regeneration operation. Based upon the modeling and deep understanding of material properties, a DPF system design has been successfully applied on a high performance diesel engine exhaust system, such as the Audi R10 TDI, the first diesel racing car that won the most prestigious endurance race in the world: the 24 hours of Le Mans in both 2006 and 2007. The design concept can be used for other materials and applications
Technical Paper

Enhanced VALVETRONIC Technology for Meeting SULEV Emission Requirements

2006-04-03
2006-01-0849
BMW VALVETRONIC technology is able to maintain the most important measures to reduce emissions. The further optimized charge movement created by VALVETRONIC stabilizes the combustion in the catalyst heating mode with extremely retarded ignition timing. When the engine is warm the high residual gas tolerance ensures very low Engine-Out NOx emissions and at the same time a low level of hydrocarbons. The atomization of fuel droplets due to high flow velocity in the valve gap area leads to improved mixture formation and reduced wall wetting. Engine-Out HC emissions in a cold engine are therefore reduced. Combined, the emission measures achieve robust and efficient emission control. In combination with additional after-treatment like secondary air system and catalysts using high cell density VALVETRONIC engines form an excellent base for SULEV emission regulations without neglecting the typical BMW claim of efficient dynamics.
Technical Paper

Next Generation Catalysts are Turbulent:Development of Support and Coating

2004-03-08
2004-01-1488
Future catalyst systems need to be highly efficient in a limited packaging space. This normally leads to a design where the flow distribution, in front of the catalyst, is not perfectly uniform. Measurements on the flow test bench show that the implementation of perforated foils for the corrugated and flat foils has the capability to distribute the flow within the channels in the radial direction so that the maximum of the given catalyst surface is of use, even under very poor uniformity indices. Therefore a remarkable reduction in back pressure is measured. Emission results demonstrate cold start improvement due to reduced heat capacity. The use of LS - structured ( Longitudinal structured ) corrugated foils creates a high turbulence level within the single channels. The substrate lights-up earlier and the maximum conversion efficiency is reached more quickly.
Technical Paper

New Physical and Chemical Models for the CFD Simulation of Exhaust Gas Lines: A Generic Approach

2002-03-04
2002-01-0066
In the near future the effort on the development of exhaust gas treatment systems must be increased to meet the stringent emission requirements. If the relevant physical and chemical models are available, the numerical simulation is an important tool for the design of these systems. This work presents a CFD model that allows to cover the full range of applications in this area. After a detailed presentation of the theoretical background and the modeling strategies results for the simulation of a close-coupled catalyst are shown. The presented model is also applied to the oxidation of nitrogen oxides, to a diesel particle filter and a fuel-cell reformer catalyst.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Misfire Detection by Evaluating Crankshaft Speed - A Means to Comply with OBDII

1993-03-01
930399
An effective method for detecting misfire using crank speed fluctuations has been developed for on-board use in production vehicles. Engine misfire is represented in this method by Engine Roughness identified by crankshaft rotational acceleration. Engine Roughness is calculated for each combustion event and is compared with a speed and load dependent threshold permitting the determination of single or continuous misfire. Correctional functions are applied to avoid erroneous detection during highly transient engine operation. In the wide range of engine speed and load at common driving conditions the detection of single and continuous misfire events is possible without requiring additional sensors or electronic hardware in most cases. This sophisticated method as well as other OBDII functions has already been implemented into 8 bit and 16 bit ECU's.
X