Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Sustainable Propulsion in a Post-Fossil Energy World: Life-Cycle Assessment of Renewable Fuel and Electrified Propulsion Concepts

2024-07-02
2024-01-3013
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. To date, extensive research has been conducted on the CO2 life cycle analysis of mobile propulsion systems. However, achieving absolute net-zero CO2 emissions requires the adjustment of the relevant key performance indicators for the development of mobile propulsion systems. In this context, research is presented that examines the ecological and economic sustainability impacts of a hydrogen-fueled mild hybrid vehicle, a hydrogen-fueled 48V hybrid vehicle, a methanol-fueled 400V hybrid vehicle, a methanol-to-gasoline-fueled plug-in hybrid vehicle, a battery electric vehicle, and a fuel cell electric vehicle. For this purpose, a combined Life-Cycle Assessment (LCA) and Life-Cycle Cost Assessment was performed for the different propulsion concepts.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Scenario-Based Development and Meta-Level Design for Automotive Systems: An Explanatory Study

2024-04-09
2024-01-2501
Prevailing automotive development focus shifts towards passenger-centric development of vehicle systems. Comparative to autonomous driving development, the challenge evolves to describe all relevant driving situations with the necessary information and context to be able to develop and optimize vehicle systems to actual driving situations. The situational description or scenario, i.e., context or ambiance in which a vehicle is located, represents a fundamental factor in consideration of system behavior and respective system optimization opportunities. The challenge to solve the respective automotive engineering problems for nonlinear multidimensional parameter spaces or mixed integer classification problems is to describe and limit the possible solution space by suitable methodologies. Conventional methods prove inadequate solution as they can only be applied with significant financial resources and engineering time efforts, as known by autonomous driving system development.
Technical Paper

Using the XiL Approach for Brake Emission Investigations for Electrified Vehicles

2023-11-05
2023-01-1891
The following paper aims to bring the topics of connected testing and emission measurements together. It is an introduction of connected bench testing with the aim to characterize brake particle emissions with a special focus on the impact of regenerative braking by simulating the real behavior of a premium BEV SUV. Such an approach combines the advantages of a brake dynamometer including an emission testing setup and a HiL setup to allow a much more precise testing of brake particle emissions under the impact of regen braking compared to the current recommendations of the Global Technical Regulation (GTR) on brake particle emissions. It is shown for the very first time, how interactions between the vehicle motion system work. The study includes one physical front brake corner as well as one physical rear brake corner. The regen functionalities are simulated by a real ESC-ECU which is the core of the HiL test setup.
Technical Paper

Experimental Investigation of Ion Formation for Auto-Ignition Combustion in a High-Temperature and High-Pressure Combustion Vessel

2023-08-28
2023-24-0029
One of the main challenges in internal combustion engine design is the simultaneous reduction of all engine pollutants like carbon monoxide (CO), total unburned hydrocarbons (THC), nitrogen oxides (NOx), and soot. Low-temperature combustion (LTC) concepts for compression ignition (CI) engines, e.g., premixed charged compression ignition (PCCI), make use of pre-injections to create a partially homogenous mixture and achieve an emission reduction. However, they present challenges in the combustion control, with the usage of in-cylinder pressure sensors as feedback signal is insufficient to control heat release and pollutant emissions simultaneously. Thus, an additional sensor, such as an ion-current sensor, could provide further information on the combustion process and effectively enable clean and efficient PCCI operation.
Technical Paper

Investigation of Horizontal Light Function Positions on the Distance Estimation by Test Persons to Ensure Road Safety

2023-04-11
2023-01-0918
When designing new vehicles, the legal requirements of the countries in which the vehicles are homologated must be observed and implemented. The manufacturers try to consider the legal framework of the UN-ECE (United Nations Economic Commission for Europe), CCC (China Compulsory Certification) and FMVSS (Federal Motor Vehicle Safety Standard) 108 in the same vehicle to keep the variance low. For the appearance of the vehicle, the position of the light modules in the front of the vehicle is important. In addition to the surface requirements of lighting functions, the positions of the low beam (LB), high beam (HB) and the position of daytime running lights (DRL) are also regulated. When it comes to these mounting positions, the legislation between the US and the EU differs quite significantly.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

The Potential of Data-Driven Engineering Models: An Analysis Across Domains in the Automotive Development Process

2023-04-11
2023-01-0087
Modern automotive development evolves beyond artificial intelligence for highly automated driving, and toward an interconnected manifold of data-driven development processes. Widely used analytical system modelling struggles with rising system complexity, invoking approaches through data-driven system models. We consider these as key enablers for further improvements in accuracy and development efficiency. However, literature and industry have yet to thoroughly discuss the relevance and methods along the vehicle development cycle. We emphasize the importance of data-driven system models in their distinct types and applications along the developing process, from pre-development to fleet operation. Data-driven models have proven in other works to be fast approximators, of high accuracy and adaptive, in contrast to physics-based analytical approaches across domains.
Technical Paper

A Dynamic Tire Concept Model for Early Phases of Ride Comfort Development

2023-01-03
2023-01-5002
In order to correctly predict the impact of tire dimensions and properties on ride comfort in the early phases of the vehicle development process, it is necessary to fully understand their influence on the dynamic tire behavior. The currently existing models for reproducing tire forces often need many measurements for parametrization, simplify physical properties by empiric functions, or have an insufficient simulation speed to analyze many variants in the short periods of early process phases. In the following analysis, a tire concept model is presented, which utilizes relations between the static and dynamic behavior of tires in order to efficiently predict the dynamic forces in the vertical and longitudinal direction during obstacle crossing. The model allows for efficient parametrization by minimizing the number of parameters as well as measurements and ensures a high simulation speed. To realize this, initially, a selection of tires is measured on a tire test rig.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

Investigations on Visibility of Digital Road Projections

2022-03-29
2022-01-0799
This paper covers research findings on digital projections on the road. Data is provided for the root cause analysis of non-existing distraction proven by several studies. The study describes if and in which geometrical space road projections are visible to other road traffic participants. Such participants can be e.g. oncoming, passing drivers or pedestrians standing aside the road. The paper data shows where projections are recognizable and assignable to the original intention of the projection. A grid was created to identify the areas where digital projections could be understood and where the digital projections were just illegible. A dominant factor is the grazing incidence. The photons are distributed over a larger area and only the driver’s view makes a virtual compression of the illuminated area in order to make the signals legible. The results show that distraction for other road participants is unlikely for any position outside very limited areas.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
The current automotive electronic and electrical (EE) architecture has reached a scalability limit and in order to adapt to the new and upcoming requirements, novel automotive EE architectures are currently being investigated to support: a) an Ethernet backbone, b) consolidation of hardware capabilities leading to a centralized architecture from an existing distributed architecture, c) optimization of wiring to reduce cost, and d) adaptation of service-oriented software architectures. These requirements lead to the development of Zonal EE architectures as a possible solution that require appropriate adaptation of used security mechanisms and the corresponding utilized hardware trust anchors. 1 The current architecture approaches (ECU internal and in-vehicle networking) are being pushed to their limits, simultaneously, the current embedded security solutions also seem to reveal their limitations due to an increase in connectivity.
Technical Paper

Illuminated Vehicle Logos - Investigation on Potential Distraction and Their Influence on Road Safety

2022-03-29
2022-01-0797
The current development of automotive lighting strives towards more and more lighting installations on vehicles. Additionally, to that, manufacturers start animating these lighting installations as coming home or leaving home greetings from the car to the driver. In a previous paper we have shown, that these additional animations are in fact not distracting to other road users and when used correctly, e.g. in a sequential turn indicator, can be beneficial to the overall traffic safety. This study then aims to investigate the potential influence of illuminated logos on road safety. European lawmakers forbid the use of illuminated advertisements on vehicles to minimize the danger of distraction for other road users and thereby negatively influencing traffic safety. As of now, active illumination of the manufacturer’s logo is considered an advertisement.
Technical Paper

Parallel Sequential Boosting for a Future High-Performance Diesel Engine

2022-01-12
2022-01-5005
Future Diesel engines must meet extended requirements regarding air-fuel ratio, exhaust gas recirculation (EGR) capability, and tailored exhaust gas temperatures in the complete engine map to comply with the future pollutant emission standards. In this respect, parallel turbines combined with two separate exhaust manifolds have the potential to increase the exhaust gas temperature upstream of the exhaust aftertreatment system and reduce the catalyst light-off time. Furthermore, variable exhaust valve (EV) lifts enable new control strategies of the boosting system without additional actuators. Therefore, hardware robustness can be improved. This article focuses on the parallel-sequential boosting concept (PSBC) for a high-performance four-cylinder Diesel engine with separated exhaust manifolds combined with EV deactivation. One EV per cylinder is connected to one of the separated exhaust manifolds and, thus, connected to one of the turbines.
Technical Paper

Investigations on the Deposition Behaviour of Brake Wear Particles on the Wheel Surface

2021-10-11
2021-01-1301
The deposition behavior of brake wear particles on the surface of a wheel and the mechanisms on it have not been fully understood. In addition, the proportion of brake wear particles deposited on the wheel surface compared to the total emitted particles is almost unknown. This information is necessary to evaluate the number- and mass-related emission factors measured on the inertia dynamometer and to compare them with on-road and vehicle-related emission behaviour. The aim of this study is to clarify the deposition behavior of brake particles on the wheel surface. First, the real deposition behaviour is determined in on-road tests. For particle sampling, collection pads are adapted at different positions of a front and rear axle wheel. In addition to a Real Driving Emissions (RDE)-compliant test cycle, tests are performed in urban, rural and motorway sections to evaluate speed-dependent influences.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Technical Paper

Correlation-Based Transfer Path Analysis for Brake System-Induced Interfering Noise in the Vehicle Interior

2021-05-11
2021-01-5044
1. The present work introduces an approach for the analysis of the noise propagation behavior of mechatronic brake systems in modern passenger vehicles. While on the one hand, the number of features realized through the mechatronic brake system is strongly increasing; on the other hand, a continuous reduction of the overall vehicle interior noise level can be observed. This leads to an increase of interfering noise phenomena in the vehicle interior that customers might perceive as insufficient product quality. Therefore, noise elimination always plays an important role in vehicle development. The mechatronic brake system induces interfering noise that is transferred into the vehicle interior, differing from vehicle to vehicle and maneuver to maneuver. Supposedly, a wide frequency range, numerous components, and various branched transfer paths in the physical domains of airborne, structure-borne, and fluid-borne sound are involved in the noise propagation.
Technical Paper

Analysis of Human Intra- and Interpersonal Aiming Accuracy of Cutoff Lines Using Different Adjustment Methods

2021-04-06
2021-01-0849
In this paper, the human intra- and interpersonal adjustment accuracy (or aiming) of headlamp cutoff lines with different methods are examined. Intrapersonal aiming accuracy is the repeatability of a single person, while interpersonal aiming accuracy describes the differences between different people. For this purpose, a study is developed, implemented and evaluated. In one experiment, the subjects set up three different headlamps using three different methods according to the ECE regulation. In addition, the three adjustment methods used are compared with each other and evaluated in terms of the variation resulting aim. The most common aiming method, the visual adjustment of the cutoff line, such as the 10-meter wall method or analog headlamp aiming devices shows the highest variations. It is shown that digital headlamp aiming devices generally also have a lower dispersion variance, while still being better than all other adjustment methods.
Technical Paper

Investigation of the Impairment on Road Traffic through Animation and Sequential Activation

2021-04-06
2021-01-0852
Two research fields are presented in this paper covering new lighting functions. In the first part, a study is presented that evaluates distraction by light animations. 41 test subjects were involved, and a situation was constructed with several traffic participants and an animated-light vehicle parked so as to be conspicuously within the test subjects’ view. 91% of the test subjects stated they felt little or no distraction or impairment from the light display on the parked car. 29% noticed something conspicuous about the test vehicle. 22% indicated they had noticed the car’s lights flashing as its central locking system was operating. Only 7%—three of the 41 participants—noticed the animations in addition to their traffic monitoring. Of these, two said they didn’t feel disturbed at all by the animations while the third found it only very slightly distracting. Nobody said the distraction or impairment was “neutral”, “little bit” or “strong”.
Technical Paper

Future Automotive Embedded Systems Enabled by Efficient Model-Based Software Development

2021-04-06
2021-01-0129
This paper explains why software for efficient model-based development is needed to improve the efficiency of automakers and suppliers when implementing solutions with next generation automotive embedded systems. The resulting synergies are an important contribution for the automotive industry to develop safer, smarter, and more eco-friendly cars. To achieve this, it requires implementations of algorithms for machine learning, deep learning and model predictive control within embedded environments. The algorithms’ performance requirements often exceed the capabilities of traditional embedded systems with a homogeneous multicore architecture and, therefore, additional computing resources are introduced. The resulting embedded systems with heterogeneous computing architectures enable a next level of safe and secure real-time performance for innovative use cases in automotive applications such as domain controllers, e-mobility, and advanced driver assistance systems (ADAS).
X