Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Scientific Approach for Pickup Cargo Weight Reduction

2024-01-16
2024-26-0192
In this study, the benchmarked-based statistical Light Weight Index (LWI) technique is developed for predicting the world in class optimum weight. For these four statistical Lightweight Index numbers are derived based on the geometrical dimensions. This strategy is used for the target setting. To achieve the target, the Value Analysis approach for Cargo assembly is to redesign and make Refresh Cargo assembly. The organization also benefited directly by reducing the inventory cost and transportation costs because of the deletion of parts and minimizing the assemblies. Vehicle power-to-weight ratio and fuel economy also improved based on cutting weight. The complete case study with details has been mentioned in the work. The weight benefit led to an increase in the profit margin and caters to the difficulty because of the daily increase in the price of raw materials.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Importance of Metallurgical Properties to Prevent Shaft Failures in Off-road Vehicle Validation

2023-05-25
2023-28-1319
Globally, automotive sector is moving towards improving off-road performance, durability and safety. Need of off-road performance leads to unpredictable overload to powertrain system due to unpaved roads and abuse driving conditions. Generally, shafts and gears in the transmission system are designed to meet infinite life. But, under abuse condition, it undergo overloads in both torsional and bending modes and finally, weak part in the entire system tend to fail first. This paper represents the failure analysis of one such an incident happened in output shaft under abuse test condition. Failure mode was confirmed as torsional overload using Stereo microscope and SEM. Application stress and shear strength of the shaft was calculated and found overstressing was the cause of failure. To avoid recurrence of breakage, improvement options were identified and subjected to static torsional test to quantify the improvement level.
Technical Paper

Design Analysis and Development of Aluminium Cylinder Block with Slip-Fit Cylinder Liners for High Performance New Generation Passenger Car Diesel Engine

2023-04-11
2023-01-0442
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. There is a high demand for passenger car segment vehicles with high torque delivery and fuel economy for a pleasant drivability experience. Also, to meet the more stringent emission requirements, automakers are trying very hard to reduce the overall vehicle gross weight. In lowering both fuel consumption and CO2 generation, serious efforts have been made to reduce the overall engine weight. An engine cylinder block is generally considered to be the heaviest part within a complete engine and block alone accounts for 3-4% of the total weight of the average vehicle, thus playing a key role in weight reduction consideration. Aluminum casting alloys as a substitute for the traditional cast iron can mean a reduction in engine block weight between 40 and 55% [9], even if the lower strength of aluminum compared to grey cast iron is considered.
Technical Paper

Holistic Design Approach of Rocker Arm in Aluminum, Sheet Metal & Plastic Materials for Heavy Duty Commercial Application

2023-04-11
2023-01-0440
Diesel engines are known for their excellent low-end torque, better drivability, performance, and better fuel economy. The increase in customer demands pushes to deliver higher power and torque along with fuel economy. This requirement puts a great challenge on the overall weight of the engine. This paper explains the holistic approach followed along with optimizing the rocker arm cover to achieve the weight target without compromising on durability and cost in the commercial segment 2.5-liter Diesel Engine. This paper presents a complete overview of the design and development of Rocker Arm (RA) cover to meet Strength, Durability, NVH and Aesthetic in Commercial Engine where base design is in aluminum which is mounted on cylinder head with a separate breather system. From aluminum the base design of Rocker arm cover is optimized to sheet metal where in there is reduction of 43% in weight and cost saving of 13%.
Technical Paper

Study on the Effect of Clutch Hydraulic System Hysteresis on Intermittent Clutch Pedal Stuck Concern

2023-04-11
2023-01-0462
The clutch pedal in manual transmission plays a significant role in defining the comfort of driver as it is a direct customer interfaces in the vehicle. Clutch & its hydraulic release system in manual transmission are the significant components which affects the maneuverability of the vehicle and the driver comfort. The clutch pedal characteristics optimization is one of the vital parameters are involving various parameters like pedal effort, pedal travel, hump, engagement and disengagement travel, modulation travel & pedal return curve min load. Normally the clutch pedal characteristics has a hysteresis between the forward and return curve (depress and release of the clutch pedal). The hysteresis is the component of mechanical friction like clutch pedal, clutch cover, and hydraulic seal friction. For an optimum clutch pedal feel, free play, peak effort, max. travel, hump and return load are the major functional parameters.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Investigation of Solenoid-Controlled Piston Cooling Jet Benefits for a 1.5l, 3 Cylinder Tcic Diesel Engine

2023-04-11
2023-01-0230
The fuel economy of the internal combustion engine becomes progressively critical, especially with the stringent standards set by the government. To meet the government norms such as CAFE (Corporate Fuel Average Economy), different technologies are being explored and implemented in internal combustion engines. Several technologies such as variable oil pump, map controlled PCJ (Piston Cooling Jet), variable or switchable water pump & ball bearing turbocharger etc. This study investigates the effectiveness of implementing map-controlled PCJ implemented for a 1.5-litre 3-cylinder diesel engine. PCJ’s are major consumers of oil flow and map-controlled PCJ is used by many OEM’s e.g., Ford EcoSport to reduce the oil pump flow. In map-controlled PCJ, the oil to the PCJ is controlled using a solenoid valve. The solenoid valve can be completely variable or ON/OFF type. In our application, the ON/OFF type solenoid value is used to regulate the oil flow to PCJ.
Technical Paper

Investigation Of Variable Displacement Oil Pump and Its Influence on Fuel Economy for a 1.5 L, 3 Cylinder Diesel Engine

2023-04-11
2023-01-0465
The Introduction of Corporate Average Fuel Economy (henceforth will be addressed as CAFE) regulations demand suitable technological upgrades to meet the significant increase in targets of vehicle fleet fuel economy. Engine Downsizing and Friction Reduction measures help in getting one step closer to the target. In a Conventional Oil Pump, the pump discharge flow and pressure are a direct function of operating speed. There is no control over lubricant flow which results in increased power and fuel consumption due to its unnecessary pumping characteristics irrespective of the actual engine demand. This paper discusses the introduction of a variable displacement oil pump (henceforth will be addressed as VDOP) that was adapted to a 1.5-liter 3 Cylinder Diesel Engine. This approach helps the system to reduce parasitic losses as the oil flow is regulated based on the mechanical needs of the engine. The flow is regulated with help of a solenoid valve which receives input from the ECU.
Technical Paper

Improvement of SCR Thermal Management System and Emissions Reduction through Combustion Optimization

2022-12-23
2022-28-0482
Achieving higher emission norms involves various techniques and it has always been a challenging task on meeting the same. Improving the exhaust temperature is indispensable in order to enhance better conversion efficiency on the after-treatment systems. This paper clearly investigates on the various strategies involved to improve the exhaust temperatures of selective catalytic reduction and post injection strategies to meet the emission norms. On the basis of MIDC operation, key load points were selected and split injections with three pulses were implemented. The variation of both the post injection timing and quantity were performed in this paper in order to evaluate the optimum output. The effect of post injection timing and quantity variation on hydrocarbon emissions, carbon monoxide, diesel oxidation catalyst temperatures was observed on all load points. The above strategy was also evaluated on generating the pressure crank angle data.
Technical Paper

Model-Based Simulation Approach to Reduce Jerk Issue in Power Shuttle Transmission (PST) Tractor

2022-08-30
2022-01-1119
Nowadays, tractors are frequently used with front-end loaders, dozers and backhoes to cater to various non-agricultural and construction application needs. These applications require frequent shifting of gears due to the constant need for a tractor's forward/reverse direction of motion. Hence, the tractors are fitted with a power shuttle transmission (PST) to cater this need. Power-shuttle transmission (PST) development is a design process that incorporates multiple disciplines such as mechanical, hydraulics, controls and electronics. This paper presents a simulation-based approach to model the power shuttle transmission of the tractor. Firstly, individual components of PST are modelled in detail and then integrated with the complete tractor model. For this, GT-Suite has been used as a simulation platform.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
Technical Paper

Overcoming Manufacturing Challenges in Mass Production of Vanadium Micro-Alloyed Steel Connecting Rods

2022-03-29
2022-01-0234
With recent advancements to create light weight engines and therefore, to design stronger and lighter connecting rods, automobile manufacturers have looked upon vanadium micro-alloyed steels as the material of choice. These materials have been developed keeping in mind the strength and manufacturing requirements of a connecting rod. Since, 36MnVS4 has been the most popular of this category, the same has been discussed in this paper. The transition of manufacturers from the traditional C70S6 grade to the new 36MnVS4 must be dealt with in-depth study and modification of processes to adapt to new properties of the latter. C70S6 is a high carbon grade with superior fracture split whereas 36MnVS4 is a medium carbon grade with superior strength and ductility owing to the presence of vanadium.
Technical Paper

Random Vibration Fatigue Evaluation of Plastic Components in Automotive Engines

2022-03-29
2022-01-0765
Light weighting in modern automotive powertrains call for use of plastics (PP, PA66GF35) for cam covers, intake manifolds and style covers, and noise encapsulation covers. Conventionally, in early stage of design these components are evaluated for static assembly loads & gasket compression loads at component level. However, engine dynamic excitations which are random in nature make it challenging to evaluate these components for required fatigue life. In this paper, robust methodology to evaluate the fatigue life of engine style cover assembly for random vibration excitations is presented. The investigation is carried out in a high power-density 4-cylinder in-line diesel engine. The engine style cover (with Polyurethane foam) is mounted on cam cover and the intake manifold using steel studs and rubber isolators to suppress the radiated noise.
Journal Article

Fuel Injector Selection in Diesel Engine for BS6 Upgradation

2022-03-29
2022-01-0441
For meeting the stringent BS VI emissions in a 3-cylinder diesel engine the Exhaust after treatment system (EATS) was upgraded from a single brick DOC (diesel oxidation catalyst) to 2 brick DOC+sDPF (Diesel Particulate Filter) configuration. To meet the demands of emission regulation and sDPF requirements, changes were also required in the Fuel injection system. Major changes were done to the fuel injector and fuel pump. This paper primarily discusses the Fuel injector change from 1.1 to 2.2 family with changes in nozzle geometry, Nozzle tip protrusion (NTP), and injector cone angle and the effects on the emission and performance parameters. The various design values of NTP, cone angle, and Sac values are tested in an actual engine to meet the required power, torque and verified to meet NOx, HC, PM values as required by the new BS (Bharat Stage) VI regulation. Other boundary conditions are also checked - BSFC (Brake Specific Fuel Consumption), temperature, etc.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

Optimization of Clutch Pedal Vibration without Compromising the Overall Efficiency of the Clutch System

2021-10-01
2021-28-0247
The clutch pedal in manual transmission plays a significant role in defining the comfort of driver as the component is one of the end user’s direct interface in the vehicle. Whenever driver operates the clutch pedal, comfort and NVH refinement should be felt over the complete pedal travel. The expectations of customer on NVH refinements, such as pedal vibration felt on foot during actuation, becomes the part of perceived quality and hence addressing the concern is very crucial. Due to advancements of technology and down-sizing of engines, NVH becomes the challenging area where the clutch pedal vibrations need to be eliminated to improve the comfort. In this paper we are explaining the problem statement and NVH solution to eliminate the clutch pedal vibration observed during clutch pedal actuation. Pedal vibrations were very severe at 10% clutch pedal pressed condition, and the same tends to diminish till 50% clutch pedal pressed condition.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
X