Refine Your Search

Topic

Author

Search Results

Technical Paper

Duty Cycle Based Fuel Consumption Calculation Using Simulation Methodology for Agricultural Tractor

2024-01-16
2024-26-0068
This project was undertaken with an objective to develop methodology by formulating set of procedures that would help in achieving the end goal. Once methodology is established, it paves way to optimize the end results more effectively which results in reduced lead time during product development. Methodology can either be based on pure experimental investigations or by simulations. Combination of mathematical and empirical approach is inherently followed in simulations, which helps in reducing the testing time and overall cost. Commercial vehicles (CV) have seen paradigm shift in the fuel consumption (FC) certification approaches, with an intention to align with 2016 Paris climate agreement. Use of simulation tool like VECTO for commercial vehicle FC certification has gained momentum in Europe. Overall experience gained in commercial vehicle FC simulation has motivated us to leverage the learnings for off-road applications like agricultural tractors.
Technical Paper

Framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems

2024-01-16
2024-26-0022
Autonomous Emergency Braking (AEB) systems play a critical role in ensuring vehicle safety by detecting potential rear-end collisions and automatically applying brakes to mitigate or prevent accidents. This paper focuses on establishing a framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems (ADAS) by testing & verifying the functionality of a RADAR-based AEB ECU. A comprehensive V&V approach was adopted, incorporating both virtual and physical testing. For virtual testing, closed-loop Hardware-in-Loop (HIL) simulation technique was employed. The AEB ECU was interfaced with the real-time hardware via CAN. Data for the relevant target such as the target position, velocity etc. was calculated using an ideal RADAR sensor model running on the real-time hardware. The methodology involved conducting a series of test scenarios, including various driving speeds, obstacle types, and braking distances.
Technical Paper

Development of Methodology for Accelerated Validation of Axle Components in Relation to Static Load Capacity

2024-01-16
2024-26-0373
The Indian automotive industry is striving towards more safe and durable vehicles. A need was felt to study the effect of changes in axle static loads on fatigue life of the axle components. Also, there was a need to develop generic test method, as there are no test standards or generic methods available in public domain for fatigue testing of commercial vehicle axles. The study was carried out to check direct effect of change in axle loads on various connections on axle, effect of suspension configuration and force distribution, Vehicle dynamics, etc. In this paper, an India specific generic load spectra was evaluated for accelerated laboratory validation. Paper discusses the methodology as; study of heavy commercial vehicle systems, road load data collection on identified test vehicles w.r.t. test matrix finalized, India specific test loads and load spectra development, normalization of axle load spectra w.r.t to static axle weights and arriving at test guidelines.
Technical Paper

Genesis of the “Automotive Homologation 4.0” Framework for India

2024-01-16
2024-26-0360
The term Industry 4.0 is well known in contemporary automotive landscape. It encompasses a smart integrated framework of IIoT (Internet of Things) and industrial automation with machine learning, artificial intelligence and big data analytics to arrive at optimal solutions to running the processes in a streamlined, efficient and effective manner. Industry 4.0 has assumed critical significance in the contemporary era of people working from remote locations to operate processes in order to build products, thereby ensuring business continuity. Consequently, it follows that if industry 4.0 is applied to automotive homologation activity, it will lead to a standardized evaluation, consistent fidelity of testing, accurate judgement of the product under test with regards to its certification, and most importantly, timed delivery to release in the market. The author hereby elucidates a unified Industry 4.0 Framework for Automotive homologation in India which is the need of the hour.
Technical Paper

Physical Testing Methodology and Evaluating Windscreen Wiping with Respect to Vision Zones for Vehicle Category other than M1

2024-01-16
2024-26-0366
The windscreen wiping system is mandatory requirement for automotive vehicle as per Central motor vehicle rules (CMVR). The main scope of the standard is to ensure vision zones to be wiped by wiping system to ensure maximum field of vision to the driver. The evaluation of vision zones as per IS 15802:2008 is generally determined by virtual simulation by OEMs. The limitation of virtual simulation is due to actual tolerances in vehicle, due to seat fitment, ergonomic dimensions, seat cushioning effect and wiper non-effective operation which are not taken into consideration very well off. The testing methodology described in the paper is an in-house developed test method based on SAE recommended practices. With the help of 3D H-point machine and a laser based ‘Theodolite’ equipped with horizontal and vertical angle projections from single pivot point is used to develop various vision zones on an actual vehicle windscreen as per technical data.
Technical Paper

Development of System Level Testing Method for Passenger Car Engine Mounts

2024-01-16
2024-26-0324
Engine mount is an integral part of any Internal Combustion engine. It is the medium which isolates the vibrations coming from engine being transferred to the chassis or body. Engine or power plant is the main source of unbalanced vibrations. The major role of an engine mount is to reduce those vibration levels, improve ride comfort and increase the life of an engine and its parts [1]. This work determines the Test methodology development for passenger car engine mounts in the Laboratory by using Multi-axial environment [2]. This explains the details of truly Multi-axial test rig development, Drive file creation and the Durability Testing with the maintained vehicle conditions by simulating field conditions in the laboratory. The Multi-axial test rig developed with incorporation of vehicle’s both Front Drive shafts torques and One Propeller shaft which simulates the Front wheel drives and the rear prop shaft torque.
Technical Paper

Regulatory Framework of Construction Equipment Vehicles in India

2024-01-16
2024-26-0089
The Construction & Mining field is continuously upgrading, reshaping under the stimulus of technical enhancement. India is considered one of fastest growing country in the word. Requirement for Construction Equipment Vehicles in India is continuously growing due increased rate infrastructure development. To promote development of the Construction Equipment Vehicles (CEV’s) manufacturing sector it was also necessary to build a new governance architecture. Every vehicle plying on road has to comply with Central Motor Vehicle Regulatory requirements as per CMVR act 1989. Earlier 2021 CEV’s were required to go through performance trials like brake, steering effort, turning circle measurement, speedometer calibration as dynamic tests as per regulations.
Technical Paper

Generation of Tire Digital Twin for Virtual MBD Simulation of Vehicles for Durability, NVH and Handling Evaluation

2024-01-16
2024-26-0301
With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment. The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models. Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation.
Technical Paper

Role of Silicone Based Thermal Encapsulants for 2&3W Battery Module Thermal Management Applications

2023-05-25
2023-28-1316
The Indian market for battery-powered electric vehicles (xEV) is growing exponentially in the coming years, fueled by tumbling lithium-ion battery prices and favorable government policies. Lithium-ion battery is leading in clean mobility ecosystem for electric vehicles. LiBs efficient and safe performance for tropical climatic conditions is one of the primary requirements for xEV to succeed in India. The performance of LiBs, however, is impacted due to ambient temperature as well as the heat generated within cell due to the load cycle electrochemical reaction. The acceptable operating temperature region for LiBs normally is between 20 °C to 45 °C and anything outside of this region will lead to degradation of performance and irreversible damages. Therefore, understanding the thermal behavior is very crucial for an efficient battery thermal management.
Technical Paper

Innovative Design of an Automotive High Side Smart Switch Based Upon Frugal Engineering Concepts

2022-03-29
2022-01-0105
Automotive electronics is increasingly playing a vital role in all vehicle subsystems. Since an electronic control system needs to be interfaced with the outside world, an electronic smart switch forms a key output interface with various loads such as solenoids, lamps, motors, relays, fans etc. Although integrated circuit based smart-switch semiconductor solutions are provided by all global semiconductor vendors, they prove more often than not to be overdesigned for majority of situations relevant to low end vehicles. They are also generously loaded with standard high-end features like thermal and overload protection which may not always be required. In addition, external transient protection and on-chip diagnostic features lend further complexity to the entire solution.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development

2021-09-22
2021-26-0318
To enhance the crashworthiness of electric vehicles, designing the optimized and safer battery pack is very essential. The deformed battery cell can result in catastrophic events like thermal runaway and thus it becomes crucial to study the mechanical response of battery cell. The goal of the research is to experimentally investigate the effect of mechanical deformation on Lithium-ion battery cell. The paper thoroughly studies the phenomenon of short circuiting at the time of failure. Various experiments are carried on 18650 cylindrical cells (NCA chemistry) under custom designed fume hood. The setup captures the failure modes of battery cell. The loading conditions have been designed considering the very possible physical conditions during crash event. The study has been done for radial compression, semicircular indentation, hemispherical indentation, flat circular indentation and case of three-point bending.
Technical Paper

Sound Power Assessment, Noise Source Identification and Directivity Analysis of Compaction Machines

2021-09-22
2021-26-0281
NVH has gained importance in the field of earth moving equipment due to the demand of quieter machines and stringent in-cab as well as exterior noise emission norms. Several parts of the world have adopted strict legislation on noise emission by earth moving equipment, but many countries have not adopted any regulations till date. The aim of this study is to help governing bodies as well as machine manufacturers in adopting simple yet accurate testing method for compactor machine. The study consists of directivity analysis, noise source identification, noise source ranking and 4-point microphone position sound power evaluation method applied to compactors with wide range of engine power ratings. All the tests in 4-point method and directivity analysis were performed under stationary as well as dynamic conditions.
Technical Paper

Evaluation of Cable Harness of an Electric Vehicle Powertrain through Simulation

2021-09-22
2021-26-0350
The Electric Vehicles (EV) or Hybrid Electric Vehicle (HEV) has a bunch of electrical/electronic components and its operation give rise to complicated EMI/EMC issues. The Power Electronics Module (PEM), comprising of DC-DC convertor/invertor and Battery Management Unit (BMU), is driving the motor to propel the vehicle. “Battery Pack Module” powers these units through cables. The fast switching of these circuit elements present in the system leads to noise propagation through the cables. These noise signals give rise to various Electromagnetic (EM) related issues in the cable harness of vehicle. It is essential that these cables should not interfere with other electronic components and also does not get effected by external EM disturbances.
Technical Paper

A Unique Approach for Motion Planning for Autonomous Vehicle Using Modified Lattice Planner

2021-09-22
2021-26-0121
In order to travel in a chaotic and dynamic environment, an autonomous vehicle requires a motion plan. This motion plan ensures collision free, optimum travel without violating any traffic rules. The optimum solution for path planning problem exists in higher dimensions, however, with the help of useful heuristics the problem can be solved in real time, which is required for real time operation of an autonomous vehicle. There are different well established techniques available to plan a collision free kinematically traversable path. One of such techniques is called conformal Lattice planner. However, the legacy version of conformal lattice planner is not optimized and also is prone to fail under specific dynamic environment conditions. Moreover, the legacy version of conformal lattice planner is also not road aware. Due to this reason it is a semi optimized way to solve the motion planning problem.
Journal Article

Investigation of Squeak and Rattle Problems in Vehicle Components by Using Simulation & Doe Techniques

2021-09-22
2021-26-0293
The automotive and related industries are concentrating their efforts on improving comfort by lowering engine, wind, and road noise and vibrations. However, as background noise levels decrease, the squeaks and rattles (S&R) generated by the vehicle's many components become more noticeable and distracting. As a result of the absence of a dominant noise source from a traditional petrol/diesel car, (S&R) noise becomes more dominant than other types of noise in electric vehicles. In this paper, we propose a novel simulation technique for developing a systematic approach to identifying and solving (S&R) problems in vehicle components/sub-assemblies during the primary stage of product development cycle, thus reducing the overall product development time. This paper will present a novel approach to comprehending various methods and Design of Experiments (DOE) techniques used to determine the root cause of (S&R) problems and to solve those using numerical methods.
Journal Article

Study to Compare CO2 Emissions from M1 Bharat Stage VI Passenger Vehicles at Chassis Dynamometer and Indian Real Traffic Conditions

2021-09-22
2021-26-0198
Bharat Stage VI (BS VI) emission norms are already introduced in India from 1st April 2020. The implementation of BS VI emission standards essentially brings Indian motor vehicle regulations on par with most stringent International standards. The BS VI regulation also mandated Real Driving Emission (RDE) measurement with objective to limit regulated pollutants esp. NOX & PN during real use of vehicle. For M1 passenger vehicles Carbon Dioxide (CO2) emissions measured in Lab is also regulated under CAFÉ (Corporate Average Fuel Economy) however, CO2 emission during Real on Road Driving is not regulated. So, this study was carried out to compare CO2 on real road traffic conditions with standard lab conditions. This study was done on a set of BS VI compliant vehicles with diverse characteristic such as engine capacity, fuel type.
Technical Paper

Aluminium for Curbing GHG Emissions in Indian Public Transport Buses

2020-04-14
2020-01-1050
Major cause of air pollution in the world is due to burning of fossil fuels for transport application; around 23% GHG emissions are produced due to transport sector. Likewise, the major cause of air pollution in Indian cities is also due to transport sector. Marginal improvement in the fuel economy provide profound impact on surrounding air quality and lightweighting of vehicle mass is the key factor in improving fuel economy. The paper describes robust and integrated approach used for design and development of lightweight bus structures for Indian city bus applications. An attempt is made to demonstrate the use of environment friendly material like aluminium in development of lightweight superstrutured city buses for India. Exercise involved design, development and prototype manufacturing of 12m Low Entry and 12m Semi Low Floor (SLF) bus models.
Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks tool and the simulation has been carried out using ANSYS Fluent.
X