Refine Your Search

Topic

Author

Search Results

Technical Paper

Duty Cycle Based Fuel Consumption Calculation Using Simulation Methodology for Agricultural Tractor

2024-01-16
2024-26-0068
This project was undertaken with an objective to develop methodology by formulating set of procedures that would help in achieving the end goal. Once methodology is established, it paves way to optimize the end results more effectively which results in reduced lead time during product development. Methodology can either be based on pure experimental investigations or by simulations. Combination of mathematical and empirical approach is inherently followed in simulations, which helps in reducing the testing time and overall cost. Commercial vehicles (CV) have seen paradigm shift in the fuel consumption (FC) certification approaches, with an intention to align with 2016 Paris climate agreement. Use of simulation tool like VECTO for commercial vehicle FC certification has gained momentum in Europe. Overall experience gained in commercial vehicle FC simulation has motivated us to leverage the learnings for off-road applications like agricultural tractors.
Technical Paper

Design and Development of E-axle as a Retro and OE Fitment Solution for Light Commercial Vehicles Ranging from 1.5 to 5 Ton GVW

2024-01-16
2024-26-0119
The Light commercial vehicle (LCV) is primarily used for the last mile delivery and it hold the volume share of around 61% in the commercial vehicle segment. The last mile delivery services have seen a massive surge after the CoVID 19 pandemic resulting is the increase sale of LCV in last few years and is expected to grow further by 8-11% in the coming years. However, city logistic is also responsible for most pollution and noise in the city. Hence, policymakers are aiming to reduce carbon footprint by promoting the use of Electric vehicle by providing incentive to automakers though schemes like FAME I and FAME II. In order to effectively reduce the carbon footprint within city it is important to increase the use of new electric vehicle and convert the old polluting vehicles to electric. Hence, a retro fitment solution for converting used LCV to electric can help in reducing emission as well as noise pollution. Later the same solution can be offered as OE fitment solution.
Technical Paper

Development of Methodology for Accelerated Validation of Axle Components in Relation to Static Load Capacity

2024-01-16
2024-26-0373
The Indian automotive industry is striving towards more safe and durable vehicles. A need was felt to study the effect of changes in axle static loads on fatigue life of the axle components. Also, there was a need to develop generic test method, as there are no test standards or generic methods available in public domain for fatigue testing of commercial vehicle axles. The study was carried out to check direct effect of change in axle loads on various connections on axle, effect of suspension configuration and force distribution, Vehicle dynamics, etc. In this paper, an India specific generic load spectra was evaluated for accelerated laboratory validation. Paper discusses the methodology as; study of heavy commercial vehicle systems, road load data collection on identified test vehicles w.r.t. test matrix finalized, India specific test loads and load spectra development, normalization of axle load spectra w.r.t to static axle weights and arriving at test guidelines.
Technical Paper

Development of India Specific Biaxial Test Cycle for Fatigue Testing of Wheel Rims and Wheel Hub Bearings for Heavy Commercial Vehicles

2024-01-16
2024-26-0322
Wheel rims and wheel hub bearings are critical components of Heavy Commercial Vehicle (HCV) suspension systems and are subjected to extensive fatigue loading throughout their operational life. Actual loading conditions on wheels are a combination of radial loads (vertical loads) and cornering loads (lateral loads) acting simultaneously and are directly influenced by payload and road conditions. Currently for Indian usage, there are test guidelines [1] only for separate uniaxial Radial Fatigue Test (RFT) and Cornering Fatigue Test (CFT) for wheel rims which might not represent realistic combined loading conditions, and no generic guidelines are available for testing of wheel hub bearings.
Technical Paper

Regulatory Framework of Construction Equipment Vehicles in India

2024-01-16
2024-26-0089
The Construction & Mining field is continuously upgrading, reshaping under the stimulus of technical enhancement. India is considered one of fastest growing country in the word. Requirement for Construction Equipment Vehicles in India is continuously growing due increased rate infrastructure development. To promote development of the Construction Equipment Vehicles (CEV’s) manufacturing sector it was also necessary to build a new governance architecture. Every vehicle plying on road has to comply with Central Motor Vehicle Regulatory requirements as per CMVR act 1989. Earlier 2021 CEV’s were required to go through performance trials like brake, steering effort, turning circle measurement, speedometer calibration as dynamic tests as per regulations.
Technical Paper

Study of Changes in Exhaust After-Treatment System Components in M & N Category Vehicles from the RDE Monitoring Stage to the RDE Compliance Stage

2024-01-16
2024-26-0150
Bharat Stage VI emission norms were implemented in India in two stages: Stage I from April 1, 2020, and Stage II from April 1, 2023. For M & N category vehicles, the RDE test along with other applicable certification tests is mandatory for obtaining a BSVI compliance certificate during stages I and II. The RDE test is conducted on roads under real driving conditions, unlike the Type-I test, which uses a predefined cycle on the chassis dynamometer, during which the ambient temperature and other environmental conditions are controlled in a narrow range. During BSVI Stage I for the RDE test, there was no limit for any pollutant. Therefore, it is considered as the RDE monitoring stage, and from BS-VI Stage II, limits are enforced on a few pollutants (NOX and PN) as notified in notification GSR 226(E) dated March 27, 2023. Therefore, it is considered the RDE compliance stage.
Technical Paper

Development of Full Car Model for Ride Analysis of Light Duty Bus using MATLAB Simulink

2021-09-22
2021-26-0088
Ride is considered to be one of the crucial criterion for evaluating the performance of a vehicle. Automobile industry is striving for improvement in designs to provide superior passenger comfort in Commercial vehicles segment. In Industry, Quarter-car model has been used for years to study the vehicle’s ride dynamics. But due to lower DOF involved in quarter car, the output accuracy is somewhat compromised. This paper aims in development of a 7 DOF full-car Model to perform the ride- comfort analysis for Light Duty 4*2 Commercial Bus using MATLAB Simulink which can be used to tune the suspension design to meet the required ride-comfort criteria. Firstly, experimental data and Physical Parameters are collected by performing Practical Test on commercial Bus on different road profiles. Secondly, a Full Car Mathematical Model with 7 DOF has been developed for a bus using MATLAB Simulink R2018a.
Technical Paper

Sound Power Assessment, Noise Source Identification and Directivity Analysis of Compaction Machines

2021-09-22
2021-26-0281
NVH has gained importance in the field of earth moving equipment due to the demand of quieter machines and stringent in-cab as well as exterior noise emission norms. Several parts of the world have adopted strict legislation on noise emission by earth moving equipment, but many countries have not adopted any regulations till date. The aim of this study is to help governing bodies as well as machine manufacturers in adopting simple yet accurate testing method for compactor machine. The study consists of directivity analysis, noise source identification, noise source ranking and 4-point microphone position sound power evaluation method applied to compactors with wide range of engine power ratings. All the tests in 4-point method and directivity analysis were performed under stationary as well as dynamic conditions.
Journal Article

Investigation of Squeak and Rattle Problems in Vehicle Components by Using Simulation & Doe Techniques

2021-09-22
2021-26-0293
The automotive and related industries are concentrating their efforts on improving comfort by lowering engine, wind, and road noise and vibrations. However, as background noise levels decrease, the squeaks and rattles (S&R) generated by the vehicle's many components become more noticeable and distracting. As a result of the absence of a dominant noise source from a traditional petrol/diesel car, (S&R) noise becomes more dominant than other types of noise in electric vehicles. In this paper, we propose a novel simulation technique for developing a systematic approach to identifying and solving (S&R) problems in vehicle components/sub-assemblies during the primary stage of product development cycle, thus reducing the overall product development time. This paper will present a novel approach to comprehending various methods and Design of Experiments (DOE) techniques used to determine the root cause of (S&R) problems and to solve those using numerical methods.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Pass-By Noise Reduction of Light Commercial Vehicle (LCV)

2018-06-13
2018-01-1539
The increasing in popularity of Light Commercial Vehicles (LCV) segment is an emerging trend in the commercial vehicle industry. LCVs are very efficient and cost-effective for transportation of materials and good on short distances or loads of lesser weights. Sensing the market potential, many auto companies have developed LCVs recently. Since LCV segment is price sensitive, low cost single cylinder water cooled diesel engine being used as prime mover. High noise & vibration is inherent feature of diesel engine & it is predominant in single cylinder diesel engine. In order to retain low cost of product, less attention is given on overall noise of vehicle. Also, it is challenging to meet the regulatory limits of Pass-by Noise (PBN) for this category of vehicle. This paper is a development work done for pass-by noise reduction of a diesel powered single cylinder LCV vehicle. A prototype vehicle needs to meet the legislative pass-by noise requirement when tested as per IS0 362 / IS 3028.
Technical Paper

Acoustic Enclosure Optimization for a Higher Capacity Diesel Generator Set Using Statistical Energy Analysis (SEA) Based Approach

2017-01-10
2017-26-0188
Diesel powered electric generators are used in a variety of applications, such as emergency back-up power, temporary primary power at industrial facilities, etc. As regulatory and customer requirements demand quieter designs, special attention is given to the design of acoustic enclosures to balance the need of noise control with other performance criteria like ventilation and physical protection. In the present work, Statistical Energy Analysis (SEA) approach augmented by experimental inputs is used to carry out Vibro-acoustic analysis of an enclosure for higher capacity Diesel generator set. The exterior sound radiated from an enclosed generator is predicted and further enclosure is optimized for an improved sound-suppression. The airborne sources such as engine, alternator, radiator fan and exhaust are modelled explicitly using experimental noise source characterization. Structure borne inputs are also captured in the test for improving modelling accuracy.
Technical Paper

Measurement and Prediction of Sound Absorption of Sound Package Materials in Large and Small Reverberation Chambers

2017-01-10
2017-26-0195
The paper discusses the methodology for measuring the sound absorption of sound package materials in a different sizes of reverberation chambers. The large reverberation chamber is based on test methods and requirements as per ASTM C423 and ISO 354 standards. Both the test standards are similar and recommend a reverberation chamber volume of at least 125 m3 and 200 m3 respectively for sound absorption measurements from 100 Hz to 5000 Hz. The test sample size requirements are from 5.5 to 6.7 m2 as per ASTM C423 and 10 to 12 m2 as per ISO 354. In the automotive sector passenger car, heavy truck, and commercial vehicle, the parts that are used are much smaller in size than the size prescribed in both the standards. The requirement is to study the critical parameters such as the chamber volume, sample size, reverberation time and cut-off frequency etc. which are affecting the sound absorption property of acoustic material.
Technical Paper

Sound Quality Evaluation of a Brake and Clutch Pedal Assembly used for Automotive Applications

2017-01-10
2017-26-0194
Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
Technical Paper

Full Matrix OBD Verification and Validation of EMS using Hardware in Loop Simulation

2017-01-10
2017-26-0284
On-board diagnostics (OBD) is a term referring to a vehicle's self-diagnostic and reporting capability. It is a system originally designed to reduce emissions by monitoring the performance of major emission related components. There are two kinds of on-board diagnostic systems: OBD-I and OBD-II. In India OBD I was implemented from April 2010 for BS IV vehicles. OBD II was implemented from April 2013 for BS IV vehicles. Apart from the comprehensive component monitors, OBD II system also has noncontinuous monitors like Catalyst monitoring, Lambda monitoring, and other after treatment system monitors. For OBD II verification and Validation, it is required to test all the sensors and actuators that are present in the engine, for all possible failures. From an emissions point of view there are lists of critical failures that are caused due to malfunction of sensors and actuators. Carrying out the full matrix failure testing on the running engine could be tedious, unsafe and time consuming.
Technical Paper

Sound Quality Rating of Passenger Car Diesel Powertrains

2017-01-10
2017-26-0189
The parameters such as lower noise levels, quietness, etc. of a vehicle has no longer remained the only driving features since the passenger car buyers are greatly influenced by the perception of the sound. In a scenario like this, the sound quality becomes of great importance especially for smaller diesel powertrains as they are more annoying than their gasoline counterparts. The idling noise is critical as its noise creates the first impression of the vehicle on the buyer. The Indian passenger car market is dominated by diesel cars equipped with smaller engines less than 2 liter capacity. Present work describes the methodology to formulate the equation for annoyance/pleasantness for the diesel powertrains used in Indian passenger cars. The index, Sound Annoyance Rating (SAR) developed through this work is significant for powertrain level target setting and benchmarking purposes.
Technical Paper

Design and Development of Tunable Exhaust Muffler for Race Car

2016-02-01
2016-28-0193
The Exhaust Noise is one of the major noise pollutants. It is well-known that for higher noise reduction, the engine has to bear high back pressure. For a race car, back-pressure plays a major role in engine's performance characteristics. For a given condition of engine rpm & load, conventional muffler has a fixed value of back-pressure and noise attenuation. Better acceleration requires low back-pressure, but the exhaust noise should also be less than the required (Norm) value (110 dBA). This contradicting condition is achieved here by using a ‘Butterfly Valve’ in this novel exhaust muffler. The butterfly valve assumes 2 positions i.e. fully open & fully closed. When the valve is fully closed, the noise reduction will be higher, but the back-pressure will also shoot up. When open, noise reduction will be less and so the back-pressure. So, when better performance is required, the valve is opened and back-pressure is reduced. The muffler is designed for a 4 cylinder 600 cc engine.
Technical Paper

Parametric Optimization for Biodiesel Production from Jatropha Curcus

2015-01-14
2015-26-0047
Biodiesel is an alternate fuel for diesel consisting of the alkyl monoester of fatty acids derived from vegetable oils. The most usual method to transform oil into biodiesel is transesterification which can be carried out using different catalyst. Jatropha is second generation oil which is non edible and can be use for producing biodiesel. The first part is to expel oil from jatropha seeds. There are different types of expelling methods such as mechanical extraction, solvent extraction and enzymatic extraction. The study was conducted with hand driven mechanical expeller which is most conventional way of extracting oil from seeds with mechanical efficiency of 60-80% for single pass. The study includes various combinations of parameters like seed treatment, sun drying, pre-heating, soaking at different temperatures and different de-hulling compositions.
Technical Paper

Sound Quality based Benchmarking Methodology for Vehicle Interior Noise

2013-11-27
2013-01-2853
Greater customer awareness is driving the automotive industry to constantly look to innovate and ensure that greater time, efforts and considerable resources are spent in developing a better vehicle. As we move away from noisy vehicles, the differentiating parameter in vehicles is the perception of quality in the vehicle noise or sound. As the masking effect due to overall vehicle noise level abates, many low noise sources gain prominence, which directly influences the perception of noise refinement. Hence, the concept of vehicle interior noise is not only limited to lower noise levels but has also extended to better sound quality (SQ). SQ technique involves use of relevant parameters for quantifying a subjective quality into an objective quantity. This paper will look at parameters relevant to subjective perception of vehicle interior noise and consider a benchmarking methodology targeting vehicle sound quality.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
X