Refine Your Search

Topic

Author

Search Results

Technical Paper

Duty Cycle Based Fuel Consumption Calculation Using Simulation Methodology for Agricultural Tractor

2024-01-16
2024-26-0068
This project was undertaken with an objective to develop methodology by formulating set of procedures that would help in achieving the end goal. Once methodology is established, it paves way to optimize the end results more effectively which results in reduced lead time during product development. Methodology can either be based on pure experimental investigations or by simulations. Combination of mathematical and empirical approach is inherently followed in simulations, which helps in reducing the testing time and overall cost. Commercial vehicles (CV) have seen paradigm shift in the fuel consumption (FC) certification approaches, with an intention to align with 2016 Paris climate agreement. Use of simulation tool like VECTO for commercial vehicle FC certification has gained momentum in Europe. Overall experience gained in commercial vehicle FC simulation has motivated us to leverage the learnings for off-road applications like agricultural tractors.
Technical Paper

Experimental Investigation of Effect of Various Diesel-Ethanol Blends on In-Use Multi-Cylinder Engine Performance and Emission

2024-01-16
2024-26-0075
In India, B7 (a biodiesel mix of 7% by volume in diesel) has been approved for use in diesel engines. Due to the depletion of fossil fuel supplies and tight pollution requirements, alternative diesel fuel has become critical. However, given the properties of diesel, no direct renewable alternative fuel can totally replace diesel. As a result, one of the solutions may be to replace part of the diesel with ethanol. In this inquisition, the impact of various diesel-ethanol blends, counting ED7.7, ED10, ED15 and ED20, were examined on two in-use multi-cylinder engines complying to different emission norms. The two engines under consideration complies with CPCB-I and CPCB-II, which is an Indian legal requirement for stationary Genset engines. For both engines, a 5-mode steady-state test cycle was considered. For each mode, the engine’s performance characteristics, including power, torque, and BSFC, were tested and described.
Technical Paper

Methanol – As a Future Alternative Fuel for Indian Automotive

2024-01-16
2024-26-0081
Methanol fuel has attracted global attention from engine researchers since the crude oil crisis and the rise in crude oil prices in the recent years. As it is one of the possible alcoholic fuels after ethanol in an automotive application that can reduce dependence on crude oil. India has also initiated research studies on methanol since the 1980s. NITI Aayog is encouraging the use of methanol as an automotive fuel for transport sector. This desktop study includes the potentiality of methanol as an automotive fuel and the methanol roadmap for India as a biofuel in the conventional gasoline application. It has been seen that Methanol has the potential to be used as a fuel in automobiles to replace gasoline or crude oil-based fuels in terms of engine performance. According to a study, India’s methanol promotion measures will encourage more enterprises to invest in the research and construction of methanol producing plants and development of methanol-fueled engines.
Technical Paper

Design and Development of E-axle as a Retro and OE Fitment Solution for Light Commercial Vehicles Ranging from 1.5 to 5 Ton GVW

2024-01-16
2024-26-0119
The Light commercial vehicle (LCV) is primarily used for the last mile delivery and it hold the volume share of around 61% in the commercial vehicle segment. The last mile delivery services have seen a massive surge after the CoVID 19 pandemic resulting is the increase sale of LCV in last few years and is expected to grow further by 8-11% in the coming years. However, city logistic is also responsible for most pollution and noise in the city. Hence, policymakers are aiming to reduce carbon footprint by promoting the use of Electric vehicle by providing incentive to automakers though schemes like FAME I and FAME II. In order to effectively reduce the carbon footprint within city it is important to increase the use of new electric vehicle and convert the old polluting vehicles to electric. Hence, a retro fitment solution for converting used LCV to electric can help in reducing emission as well as noise pollution. Later the same solution can be offered as OE fitment solution.
Technical Paper

Hydrogen as a Carbon Neutral ICE Fuel for Future India

2024-01-16
2024-26-0177
Researchers are under pressure to investigate and discover ways to improve the efficacy and reduce emissions from ICE due to the depletion of energy resources and the growing concern over global warming. Hydrogen is viewed as a promising fuel and has been investigated as a potential fuel in combustion because to several desirable qualities like carbon-less content and strong flammability limitations. When equated to other alternative fuels like LPG, CNG, LNG, etc., hydrogen has inimitable qualities because it lacks carbon, making it one of the promising alternatives fuels. In order to achieve zero CO2 emissions for traffic applications in the near future, hydrogen being an automotive fuel in ICE is a solution. The ICE powered by hydrogen is prepared for that. The actual drawbacks of using hydrogen in ICE generally are manufacturing, storage, and development of the requisite infrastructure. Hydrogen can be produced in its many forms.
Technical Paper

Effects of Low Temperature on Forged Steel Materials in Hydrogen Internal Combustion Engines Applications: Assessing Ductile-Brittle Transition

2024-01-16
2024-26-0174
Hydrogen Internal Combustion Engine (H2ICE) has hydrogen gas storage system and is operated at very low temperature before it enters the combustion chamber. The effect of hydrogen on steel materials is detrimental because of hydrogen embrittlement. Forged steel parts are used in engine specifically valve. The goal of the work is to analyze the outcome of low temperature i.e. 35 °C to -30 °C on three types of forged steel materials i.e. 40Cr4, 42CrMo4 and EN8 and assess any potential changes in their properties due to ductile to brittle transition. Charpy impact test is widely used to determine the temperature at which a material shifts from exhibiting ductile behavior to brittle behavior. This transition is critical for understanding the safety and reliability of steel components, as brittle fracture can lead to catastrophic failures.
Technical Paper

Regulatory Trends for Enhancement of Road Safety

2024-01-16
2024-26-0165
India is one of the largest markets for the automobile sector and considering the trends of road fatalities and injuries related to road accidents, it is pertinent to continuously review the safety regulations and introduce standards which promise enhanced safety. With this objective, various Advanced Driver Assistance Systems (ADAS) regulations are proposed to be introduced in the Indian market. ADAS such as, Anti-lock Braking Systems, Advanced Emergency Braking systems, Lane Departure Warning Systems, Auto Lane Correction Systems, Driver Drowsiness Monitoring Systems, etc., assist the driver during driving. They tend to reduce road accidents and related fatalities by their advanced and artificial intelligent fed programs. This paper will share an insight on the past, recent trends and the upcoming developments in the regulation domain with respect to safety.
Technical Paper

Generation of Tire Digital Twin for Virtual MBD Simulation of Vehicles for Durability, NVH and Handling Evaluation

2024-01-16
2024-26-0301
With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment. The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models. Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation.
Technical Paper

Computational Material Modelling for Damage Prediction of Advanced High Strength Steel

2023-05-25
2023-28-1309
FEA based simulations are extensively used in automotive industry for improving the product design and reducing the time taken for design and prototyping. FEA based simulations require material data as an input in form of material models. Most commonly used material models for simulation of metallic materials are elastic models and elasto-plastic models, which provide very good correlation till ultimate tensile strength (UTS). For simulation beyond UTS value, elasto-plastic material model has to be used along with material model considering the damage accumulation post UTS. For crash like event in automotive crash, required material models should consider the effect of various stress state conditions (Triaxiality) and strain rate sensitivity of materials along with damage accumulation. In LS Dyna solver, MAT_ADD_EROSION material model (GISSMO) along with MAT_024 is widely used for these applications.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

A Unique Approach for Motion Planning for Autonomous Vehicle Using Modified Lattice Planner

2021-09-22
2021-26-0121
In order to travel in a chaotic and dynamic environment, an autonomous vehicle requires a motion plan. This motion plan ensures collision free, optimum travel without violating any traffic rules. The optimum solution for path planning problem exists in higher dimensions, however, with the help of useful heuristics the problem can be solved in real time, which is required for real time operation of an autonomous vehicle. There are different well established techniques available to plan a collision free kinematically traversable path. One of such techniques is called conformal Lattice planner. However, the legacy version of conformal lattice planner is not optimized and also is prone to fail under specific dynamic environment conditions. Moreover, the legacy version of conformal lattice planner is also not road aware. Due to this reason it is a semi optimized way to solve the motion planning problem.
Journal Article

Investigation of Squeak and Rattle Problems in Vehicle Components by Using Simulation & Doe Techniques

2021-09-22
2021-26-0293
The automotive and related industries are concentrating their efforts on improving comfort by lowering engine, wind, and road noise and vibrations. However, as background noise levels decrease, the squeaks and rattles (S&R) generated by the vehicle's many components become more noticeable and distracting. As a result of the absence of a dominant noise source from a traditional petrol/diesel car, (S&R) noise becomes more dominant than other types of noise in electric vehicles. In this paper, we propose a novel simulation technique for developing a systematic approach to identifying and solving (S&R) problems in vehicle components/sub-assemblies during the primary stage of product development cycle, thus reducing the overall product development time. This paper will present a novel approach to comprehending various methods and Design of Experiments (DOE) techniques used to determine the root cause of (S&R) problems and to solve those using numerical methods.
Journal Article

Study to Compare CO2 Emissions from M1 Bharat Stage VI Passenger Vehicles at Chassis Dynamometer and Indian Real Traffic Conditions

2021-09-22
2021-26-0198
Bharat Stage VI (BS VI) emission norms are already introduced in India from 1st April 2020. The implementation of BS VI emission standards essentially brings Indian motor vehicle regulations on par with most stringent International standards. The BS VI regulation also mandated Real Driving Emission (RDE) measurement with objective to limit regulated pollutants esp. NOX & PN during real use of vehicle. For M1 passenger vehicles Carbon Dioxide (CO2) emissions measured in Lab is also regulated under CAFÉ (Corporate Average Fuel Economy) however, CO2 emission during Real on Road Driving is not regulated. So, this study was carried out to compare CO2 on real road traffic conditions with standard lab conditions. This study was done on a set of BS VI compliant vehicles with diverse characteristic such as engine capacity, fuel type.
Technical Paper

Aluminium for Curbing GHG Emissions in Indian Public Transport Buses

2020-04-14
2020-01-1050
Major cause of air pollution in the world is due to burning of fossil fuels for transport application; around 23% GHG emissions are produced due to transport sector. Likewise, the major cause of air pollution in Indian cities is also due to transport sector. Marginal improvement in the fuel economy provide profound impact on surrounding air quality and lightweighting of vehicle mass is the key factor in improving fuel economy. The paper describes robust and integrated approach used for design and development of lightweight bus structures for Indian city bus applications. An attempt is made to demonstrate the use of environment friendly material like aluminium in development of lightweight superstrutured city buses for India. Exercise involved design, development and prototype manufacturing of 12m Low Entry and 12m Semi Low Floor (SLF) bus models.
Technical Paper

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

2019-11-21
2019-28-2394
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks tool and the simulation has been carried out using ANSYS Fluent.
Technical Paper

Aerodynamic Analysis of Race Car Using Active Wing Concept

2019-11-21
2019-28-2395
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18° for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters.
X