Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

Integration and Testing of HeatCoat Carbon-Nanotube Ice Protection System on an Unmanned Aerial Vehicle

2023-06-15
2023-01-1375
The process for certifying an existing aircraft for flight into known icing is well defined and must follow specific guidelines and meet specific milestones. As UAVs are still a relatively recent development, guidelines for icing flight certification of a UAV have not yet been developed by the FAA, and no UAVs have yet been certified for FIKI under the FAA. As part of a research program, engineers at the Battelle Memorial Institute in Columbus, OH USA worked with partners to integrate its ice protection system, HeatCoatTM, onto an existing UAV platform as a retrofit with the ultimate goal of flying in icing conditions. This research program was funded by the US Government with intent to integrate HeatCoat on the TigerShark-XP UAV. The integration on the TigerShark was demonstrated to present challenges specific to the nature of this UAV that had to be overcome.
Technical Paper

Experimental Demonstration of a High-Efficiency Split-Intake D-EGR Engine Concept

2023-04-11
2023-01-0237
Dedicated-EGR™ (D-EGR™) is a concept where the exhaust of one dedicated cylinder (D-Cyl) is routed into the intake thus producing EGR to be used by the whole engine. The D-Cyl operates rich of stochiometric which produces syngas that enhances the EGR stream permitting faster combustion and greater knock mitigation. Operating an engine using D-EGR improves the knock resistance which can permit a higher compression ratio (CR) thereby increasing efficiency. One challenge of traditional D-EGR is that the D-Cyl combustion becomes unstable operating with both rich and EGR dilute conditions. Therefore, the ‘Split Intake D-EGR’ concept seeks to resolve this problem by feeding fresh air to the D-Cyl, thus allowing even richer operation in the D-Cyl which further increases the H2 and CO yield thereby enhancing the efficiency benefits.
Technical Paper

Evaluation of Indrio’s Ammonia Sensor using a Diesel Fuel Based Burner Platform

2023-04-11
2023-01-0383
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement.
Technical Paper

A New Methodology for Comparing Knock Mitigation Strategies and Their Stability Margin

2023-04-11
2023-01-0248
The automotive sector is rapidly transitioning to decarbonized, electric vehicles solutions. However, due to challenges with such rapid adoption, Internal combustion engines (ICE) are expected to be used for decades to come. In this transition period it is important to continue to improve ICE efficiency. A key design parameter to increase ICE efficiency is the compression ratio. For gasoline engines, the compression ratio is limited so as to avoid knock. Engine designers can employ several strategies to mitigate knock and enable higher compression ratios. In this study, a new methodology has been developed to compare various knock mitigation strategies. By comparing the knock limited load at a given combustion phasing the expected compression ratio increase can be inferred.
Technical Paper

Demonstration of Energy Consumption Reduction in Class 8 Trucks Using Eco-Driving Algorithm Based on On-Road Testing

2022-03-29
2022-01-0139
Vehicle to Everything (V2X) communication has enabled on-board access to information from other vehicles and infrastructure. This information, traditionally used for safety applications, is increasingly being used for improving vehicle fuel economy [1-5]. This work aims to demonstrate energy consumption reductions in heavy/medium duty vehicles using an eco-driving algorithm. The algorithm is enabled by V2X communication and uses data contained in Basic Safety Messages (BSMs) and Signal Phase and Timing (SPaT) to generate an energy-efficient velocity trajectory for the vehicle to follow. An urban corridor was modeled in a microscopic traffic simulation package and was calibrated to match real-world traffic conditions. A nominal reduction of 7% in energy consumption and 6% in trip time was observed in simulations of eco-driving trucks.
Technical Paper

Reduced Power Cylinder Friction with Advanced Coatings and Optimized Lubricants

2022-03-29
2022-01-0523
The engine power cylinder is comprised of the piston, piston rings, and cylinder. It accounts for a significant amount of total engine friction within reciprocating, internal combustion engines. Reducing power cylinder friction is key to the development of efficient internal combustion engines. However, isolating individual power cylinder tribocouples for detailed analysis can be challenging. In this work, a new reciprocating liner test rig is developed and introduced. The rig design is novel, using a stationary piston and a reciprocating cylinder liner. Friction is calculated from the force measured in the connecting rod which supports the piston. The rig allows for independent control of peak cylinder pressure, speed, and lubricant temperature. Using the newly developed test rig, several technologies for friction reduction are evaluated and compared.
Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Development of an Intake Valve Deposit Test with a GM LE9 2.4L Engine

2021-09-21
2021-01-1186
The U.S. Environmental Protection Agency (EPA) certifies gasoline deposit control additives for intake valve deposit (IVD) control utilizing ASTM D5500, a vehicle test using a1985 BMW 318i. Concerns with the age of the test fleet, its relevance in the market today, and the availability of replacement parts led the American Chemistry Council’s (ACC) Fuel Additive Task Group (FATG) to begin a program to develop a replacement. General Motors suggested using a 2.4L LE9 test engine mounted on a dynamometer and committed to support the engine until 2030. Southwest Research Institute (SwRI®) was contracted to run the development program in four Phases. In Phase I, the engine test stand was configured, and a test fuel selected. In Phase II, a series of tests were run to identify a cycle that would build an acceptable level of deposits on un-additized fuel. In Phase III, the resultant test cycle was examined for repeatability.
Technical Paper

Advanced 1-D Ignition and Flame Growth Modeling for Ignition and Misfire Predictions in Spark Ignition Engines

2021-04-06
2021-01-0376
Simulating high amounts of exhaust gas recirculation in spark ignited engines to predict combustion using the currently available CFD modeling approaches is a challenge and does not always give reasonable matches with experimental observations. One of the reasons for the mismatch lies with the secondary circuit treatment of the ignition coil and the resulting energy deposition or a complete lack of it thereof. An ignition modeling approach is developed in this work which predicts the energy transfer from the electrical circuit to the gases in the combustion chamber leading to flame kernel growth under high EGR and high gas flow velocity conditions. Secondary circuit sub-model includes secondary side of the coil, spark plug and spark gap. The sub-model calculates the delivered energy to the gas based on given circuit properties and total initial electrical energy.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Technical Paper

Particle Number Emissions Evaluation for Conventional SI, Low-Pressure Loop EGR, and D-EGR Combustion Strategies

2021-04-06
2021-01-0485
The size and distribution of a vehicle’s tailpipe particulate emissions can have a strong impact on human health, especially if the particles are small enough to enter the human respiratory system. Gasoline direct injection (GDI) has been adopted widely to meet stringent fuel economy and CO2 regulations across the globe for recent engine architectures. However, the introduction of GDI has led to challenges concerning the particulate matter (PM) and particle number (PN) emissions from such engines. This study aimed to compare the particulate emissions of three SI combustion strategies: conventional SI, conventional stoichiometric low-pressure exhaust gas recirculation (LP-EGR), and Dedicated-EGR (D-EGR) at four specific test conditions. It was shown that the engine-out PM/PN for both the EGR strategies was lower than the conventional SI combustion under normal operating conditions. The test conditions were chosen to represent the WLTC test conditions.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Impact of Selective Catalytic Reduction Process on Nonvolatile Particle Emissions

2021-04-06
2021-01-0624
Particulate matter (PM) and NOX are two major pollutants generated by diesel engines. Modern diesel aftertreatment systems include selective catalytic reduction (SCR) technology that helps reduce tailpipe NOX emissions when coupled with diesel exhaust fluid (DEF/urea) injection. However, this process also results in the formation of urea derived byproducts that can influence non-volatile particle number (PN) measurement conducted in accordance with the European Union (EU) Particle Measurement Program (PMP) protocol. In this program, an experimental investigation of the impact of DEF injection on tailpipe PN and its implications for PMP compliant measurements was conducted using a 2015 model year 6.7 L diesel engine equipped with a diesel oxidation catalyst, diesel particulate filter and SCR system. Open access to the engine controller was available to manually override select parameters.
X