Refine Your Search

Topic

Search Results

Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Influence of Key Section Parameters of Exhaust Port on Flow Capacity

2019-04-02
2019-01-0200
A three-dimensional model of a diesel engine exhaust port was established. The reliability of modeling method and the exhaust port model were verified by the steady-flow test, PIV test and pressure field test. Based on the exhaust port model, the influence of the key section parameters such as inlet area S1, throat area S2, and outlet area S3 on the flow capacity of the exhaust port was studied. The results show that, under different pressure difference and exhaust back pressure conditions, the mass flow rate increases first and then converges with the increase of the area ratio of outlet and inlet or the area ratio of throat and inlet. With the increase of the relative pressure difference, the optimal area ratio of outlet and inlet decreases and converges to 1.02, but the optimal area ratio of throat and inlet increases and converges to 1.13.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling

2019-04-02
2019-01-0432
The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation.
Technical Paper

Influence of Intake Valve Lift on Flow Capacity of Intake Port

2019-04-02
2019-01-0223
A three-dimensional model of a diesel engine intake port was established and was verified by steady-flow test. Based on this model, the influence of intake valve lift on the flow capacity of intake port was studied and a design method of maximum valve lift was put forward. The results show that, under different intake pressure and relative pressure difference conditions, the discharge coefficient increases first and then converges with the increase of valve lift. Under the same valve lift condition, with the increase of relative pressure difference, the discharge coefficient decreases slightly in subsonic state and decreases sharply from subsonic state to supersonic state, but the mass flow rate increases slightly. The optimum ratio of valve lift and valve seat diameter is related to relative pressure difference, it increases first and then keeps constant with the increase of relative pressure difference.
Technical Paper

Road Classification Based on System Response with Consideration of Tire Enveloping

2018-04-03
2018-01-0550
This paper presents a road classifier based on the system response with consideration of the tire enveloping. The aim is to provide an easily applicable yet accurate road classification approach for automotive engineers. For this purpose, tire enveloping effect is firstly modeled based on the flexible roller contact (FRC) theory, then transfer functions between road input and commonly used suspension responses i.e. the sprung mass acceleration, unsprung mass acceleration, and rattle space, are calculated for a quarter vehicle model. The influence of parameter variations, vehicle velocity, and measurement noise on transfer functions are comprehensively analyzed to derive the most suitable system response thereafter. In addition, this paper proposes a vehicle speed correction mechanism to further improve the classification accuracy under complex driving conditions.
Technical Paper

Control Research of Nonlinear Vehicle Suspension System Based on Road Estimation

2018-04-03
2018-01-0553
The control parameter of the semi-active suspension system varies with road profile; therefore, in this study a new algorithm based on cuckoo search (CS) optimization method and road estimation was proposed to investigate the characteristics of the nonlinear parameters and at the same time improve the riding comfort. Based on this, a seven degree of freedom full vehicle model was developed with nonlinear damper and spring. The sprung mass acceleration, pitch acceleration, and tire deflection could be selected as the objective functions, and the control current of semi active suspension was selected as optimization variable. A multi-object CS algorithm was utilized to obtain the optimal parameters under different road profiles, and a road estimation algorithm was used to identify the road level. Then the control parameters could be adjusted adaptively according to the level of the road.
Journal Article

Design and Position Control of a Novel Electric Brake Booster

2018-04-03
2018-01-0812
The electric vehicles and the intelligent vehicles put forward to new requirements for the brake system, such as the vacuum-independent braking, automatic or active braking, and regenerative braking, which are the key link for the vehicle’s safety and economy. However, the traditional vacuum brake booster is no longer able to meet these requirements. In this article, a novel integrated power-assisted actuator of brake system is proposed to satisfy the brake system requirements of the electric vehicles and intelligent vehicles. The electronic brake booster system is designed to achieve the function of boosting pedal force of driver, being independent on vacuum source, supplying autonomous or active braking. It is mainly composed of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, and a reaction disk. The scheme design and power-assisted braking control are the key for the electronic actuator.
Technical Paper

Experimental and Numerical Study on the Fuel Pressure Fluctuations Aroused by the Injector for the Electronic Unit Pump System

2017-10-08
2017-01-2217
The electronic unit pump system, which is widely applied to the heavy-duty diesel engine, belongs to the pulsating high-pressure fuel injection system, and the fuel pressure fluctuations have an essential influence on the spray and combustion in the internal combustion engine. Besides, pressure fluctuations are always aroused by the motion of actuators, such as the injector or other control valves, so it is also an advantage for fault diagnosis and feedback control to ascertain the relationship between the pressure fluctuation and the motion of the actuator. In this study, experiments and 1D-simulation were carried on to investigate the fuel pressure fluctuation characteristics and their correlations with the transient motion of the needle valve in the injector.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

Analysis on the Influence of Key Parameters of Control Valve on the Performance Characteristics of Electromagnetic Injector

2017-10-08
2017-01-2310
The control valve is the most important implementation part of a high pressure common rail system, and its flow characteristics have a great influence on the performance of an injector. In this paper, based on the structure and the working principle of an electromagnetic injector in a high pressure common rail system, a simulation model of the injector is established by AMESim software. Some key parameters of the control valve, including the volume of the control chamber, the diameter of the orifice Z (feeding orifice), the diameter of the orifice A (discharge orifice) and the hole diameter of the fuel diffusion hole are studied by using this model. The results show that these key structural parameters of the control valve have a great influence on the establishment of the control chamber pressure and the action of the needle valve.
Technical Paper

State Estimation Based on Interacting Multiple Mode Kalman Filter for Vehicle Suspension System

2017-03-28
2017-01-1480
The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
Technical Paper

Study on Pressure Fluctuation of a Constant Pressure Fuel System

2017-03-28
2017-01-0828
The pressure fluctuation characteristics of a constant pressure fuel system has great influence on its fuel injection characteristics. It is, therefore important to understand the impacts of these fluctuations in order to better study and optimize the fuel injection characteristics. In this study, the pressure fluctuation characteristics of the high pressure common rail system have been investigated experimentally. The transient pressure at different positions in the high pressure common rail system have been measured. The phase of pressure fluctuation during the injection process has been analyzed and the corresponding fluctuating characteristic parameters have been characterized for each phase. The changes in pressure wave propagation velocity, fuel injection pressure drop amplitude, wave amplitude, period and decay time are obtained by studying the fluctuation characteristic parameters caused by fuel pressure and temperature change.
Technical Paper

A Uniform Hardware-in-the-Loop Test Rig for Modular and Integrated Testing of Commercial Vehicle Electronic Braking System

2016-09-27
2016-01-8042
This paper describes a uniform Hardware-In-the-Loop (HiL) test rig for the different types of Electronic Braking System (EBS). It is applied to both modular testing and integrated testing. This test rig includes a vehicle dynamic model, a real-time simulation platform, an actual brake circuit and the EBS system under test. Firstly, the vehicle dynamic model is a highly parameterized commercial vehicle model. So it can simulate different types of commercial vehicle by different parameter configurations. Secondly, multi-types of brake circuit are modeled using brake components simulation library. So, it can test the EBS control unit independently without the influence of any real electro-pneumatic components. And a software EBS controller is also modeled. So it can test the algorithm of EBS offline. Thirdly, all real electro-pneumatic components without real gas inputted are connected to the real-time test platform through independent program-controlled relay-switches.
Journal Article

On the Effect of Friction Law in Closed-Loop Coupling Disc Brake Model

2016-04-05
2016-01-0476
Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
Journal Article

Study on Repeated-Root Modes in Substructure Modal Composition Analysis

2016-04-05
2016-01-0477
The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
X