Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
Technical Paper

Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures

2005-11-09
2005-22-0005
Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50th percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis.
Technical Paper

Mechanical Characterization of Porcine Abdominal Organs

2002-11-11
2002-22-0003
Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.
Technical Paper

Development of a Finite Element Model of the Human Abdomen

2001-11-01
2001-22-0004
Currently, three-dimensional finite element models of the human body have been developed for frequently injured anatomical regions such as the brain, chest, extremities and pelvis. While a few models of the human body include the abdomen, these models have tended to oversimplify the complexity of the abdominal region. As the first step in understanding abdominal injuries via numerical methods, a 3D finite element model of a 50th percentile male human abdomen (WSUHAM) has been developed and validated against experimental data obtained from two sets of side impact tests and a series of frontal impact tests. The model includes a detailed representation of the liver, spleen, kidneys, spine, skin and major blood vessels.
X