Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

Towards Standardising Methods for Reporting the Embodied Energy Content of Aerospace Products

2017-08-29
2017-01-9002
Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
Journal Article

Preforming of a Fuselage C-Shaped Frame Manufactured by Resin Transfer Molding

2013-09-17
2013-01-2214
The need for efficient manufacturing approaches has emerged with the increasing usage of composites for structural components in commercial aviation. Resin Transfer Molding (RTM), a process where a fiber preform is injected with resin into a closed tool, can achieve high fiber content required for structural components as well as improved dimensional accuracy since all surfaces are controlled by a tool surface. Moreover, RTM is well suited for parts that can be standardized throughout the aircraft, such as a fuselage frames and stringers. The objective of this investigation is to develop a preforming approach for a C-Shaped Fuselage frame. Two approaches are proposed: tri-axial braiding and hand lay-up of Non-Crimp Fabrics. The fiber architecture of the basic materials as well as the complete preforms is explained. The necessary preforming operations are detailed. The quality control measurement of fiber orientation and thickness are presented.
Technical Paper

Development of Low Cost Fuselage Frames by Resin Transfer Molding

2013-09-17
2013-01-2325
This paper presents work on the development of a low cost fuselage C-frame for aircraft primary structure using a Light Resin Transfer Molding (RTM) process. Compared to labor intensive hand layup prepreg technologies, Light RTM offers some substantial advantages by reducing infrastructure requirements such as hydraulic presses or autoclaves. Compared to Prepreg, Light RTM tooling creates two finished surfaces, which is an advantage during installation due to improved dimensional accuracy. The focus of this work was to develop means of achieving high fiber volume fraction structural frames using low cost tooling and a low volume manufacturing strategy. In this case a three piece Light RTM mold was developed using an internal mandrel. To achieve the strength requirements, a combination of crimped and non-crimped fabrics were selected for the reinforcing preform.
Technical Paper

An Approach of Developing System Redundancy Management Requirements

2013-09-17
2013-01-2258
This paper presents a generic Redundancy Management (RM) requirements definition process that is applicable to a complex system RM requirements development. In the aerospace industry, the ‘Aerospace Recommended Practices’ (ARP) 4754 and 4761 are typically used processes to ensure given safety and availability goals for complex systems. The process proposed in this paper is based on these standard guidelines and enhances them to provide a standardized process for the development of RM requirements with interactions between the system requirements development and the preliminary system safety assessment processes. The output of this process will help to achieve the following objectives: The system RM/failure monitoring requirements are defined commensurate with the system safety and availability requirements; the system is fault-tolerant to the degree necessary to meet the system safety and availability requirements; the system is robust and the system architecture is optimized.
Technical Paper

Considerations on the Use of Hydrophobic, Superhydrophobic or Icephobic Coatings as a Part of the Aircraft Ice Protection System

2013-09-17
2013-01-2108
Ice adhesion on critical aircraft surfaces is a serious potential hazard that runs the risk of causing accidents. For this reason aircraft are equipped with active ice protection systems (AIPS). AIPS increase fuel consumption and add complexity to the aircraft systems. Reducing energy consumption of the AIPS or replacing the AIPS by a Passive Ice Protection System (PIPS), could significantly reduce aircraft fuel consumption. New coatings with superhydrophobic properties have been developed to reduce water adherence to surfaces. Superhydrophobic coatings can also reduce ice adhesion on surfaces and are used as icephobic coatings. The question is whether superhydrophobic or icephobic coatings would be able to reduce the cost associated with AIPS.
Technical Paper

Efficient 3D Artificial Ice Shapes Simulations with 2D Ice Accretion Codes using a 3-Level Correction

2013-09-17
2013-01-2136
3D ice accretion codes have been available for a few decades but, depending on the specific application, their use may be cumbersome, time consuming and requiring a great deal of expertise in using the code. In particular, simulations of large 3D glaze ice accretions using multiple layers of ice is a very challenging and time consuming task. There are several reasons why 2D icing simulations tools are still widely used in the aircraft industry to produce realistic glaze ice shapes. 2D codes are very fast and robust, with a very short turn-around time. They produce adequate results in areas of the aircraft where 3D effects on airflow or droplets concentration can be neglected. Their use can be extended to other areas of the aircraft if relevant 3D effects can be taken into account. This paper proposes a simulation methodology that includes three levels of corrections to extend the use of 2D icing codes to most of the aircraft surfaces.
Journal Article

Aircraft Structure Paint Thickness and Lightning Swept Stroke Damages

2013-09-17
2013-01-2135
During its flight an aircraft can be struck by lightning and the induced high current will require a highly conductive airframe skin structure in order for it to propagate through with minimum damage. However an aircraft skin is generally coated with paint and the airframer does not always have control on the paint thickness. Paint thickness generates heightened concerns for lightning strike on aircraft, mainly because most of coatings dedicated to that purpose are non-conductive. Using insulating material or non-conductive coating with certain thickness may contribute to or increase damage inflicted by the swept stroke lightning energy, even on metallic structures Due to its high relative permittivity, a non-conductive paint or coating on a fuselage skin surface will contribute to slow down the lightning current propagation through structure. With this comes the risk of increasing heat that will favor structural damage and possible melt through.
Technical Paper

Optimal Traceability for IMA System-of-Systems

2012-10-22
2012-01-2141
Traceability has always been considered a useful but costly activity and different methods have been applied to reduce this cost. The current paper constitutes an attempt to improve these methods by introducing an optimal traceability process to be used in the context of RTCA DO-297 “Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations”. The paper starts by comparing the definitions of traceability from DO-297 and the related development guidelines (i.e. ARP4754A, DO-254 and DO-178B). The paper continues by classifying the traceability methods recommended by the guidelines and introducing a performance criterion for optimal traceability based on category theory. This criterion addresses the possibility of information loss present in the current traceability methods. The paper proposes an optimal traceability process (i.e. that guarantees that information is not lost) and exemplifies it. The paper ends by recommending further enhancements.
Journal Article

Integrated Safety Management System

2009-11-10
2009-01-3171
The Safety Management System requires a structured Risk Management Process to be effective. In the technical fields where numerous potentially catastrophic risks exist, processes and procedures need to account not only for the hardware random failures but also of human errors. The technology has progressed to the point where the predominant safety risks are not so much the machine failures but that of the human interaction. Accidents are rarely the result of a single cause but of a number of latent contributing factors that when combined result in the accident. In the Aerospace industry, the operational risk to the fleet is assessed by the manufacturer and the operator independently and is used in safety and/or regulatory decision-making.
Technical Paper

Aircraft Safety Monitoring and Assessment Practices

2001-09-11
2001-01-2639
Aircraft systems are designed with reliability, safety and cost effectiveness in mind. The certification of the aircraft is based on tests and results of theoretical analyses that show the compliance with the FAR/JAR requirements. Monitoring for safety for in-service aircraft is an important, critical and extremely complex process. The ultimate objective is to assure that the safety level is equal to the original estimate or better. The manufacturer of the aircraft is particularly responsible for overall monitoring and assessment of all safety related events and corrective actions. Many different philosophies were adopted for this purpose. The safety monitoring and audit strategy is generally based on experience, engineering judgment, event analysis and numerical quantification by using probability theory and statistical tools. The aircraft sequential entry in the service and the aging of their components lead to the non-homogeneity of the fleet.
X