Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Ultra Low Emissions and High Efficiency from an On-Highway Natural Gas Engine

1998-05-04
981394
Results from work focusing on the development of an ultra low emissions, high efficiency, natural gas-fueled heavy- duty engine are discussed in this paper. The engine under development was based on a John Deere 8.1L engine; this engine was significantly modified from its production configuration during the course of an engine optimization program funded by the National Renewable Energy Laboratory. Previous steady-state testing indicated that the modified engine would provide simultaneous reductions in nonmethane hydrocarbon emissions and fuel consumption while maintaining equivalent or lower NOx levels. Federal Test Procedure transient tests confirmed these expectations. Very low NOx emissions, averaging 1.0 g/bhp-hr over hot-start cycles, were attained; at these conditions, reductions in engine-out nonmethane hydro-carbons emissions (NMHC) were approximately 30 percent, and fuel consumption over the cycle was also reduced relative to the baseline.
Technical Paper

Humidity Effects and Compensation in a Lean Burn Natural Gas Engine

1997-05-01
971706
The effect of humidity on the lean misfire limit and emissions from a lean burn, natural gas engine is described in this paper, along with a description of a practical humidity compensation method for incorporation into an electronic control system. Experiments to determine the effects of humidity on the lean limit and emissions are described. Humidity increases were shown to decrease the rate of combustion, reduce NOx emissions, and increase the levels of unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. Data and calculations are also presented which demonstrate that increases in humidity will cause enleanment in a typical closed loop control system utilizing a universal exhaust gas oxygen (UEGO) sensor. A prototype system for humidity sensing and subsequent compensation based on these findings was implemented, and the system was found, through additional testing, to compensate for humidity very effectively.
Technical Paper

Development of an Electronically-Controlled Natural Gas-Fueled John Deere PowerTech 8.1 L Engine

1995-08-01
951940
Development of a state of the art, electronically controlled natural gas-fueled engine is detailed in this paper. The engine is a lean burn, turbochargedaftercooled engine controlled by a full authority electronic control system. This system controls fuel metering, spark timing, boost pressure, throttle position, and governing. The control system features closed-loop/adaptive-learn fuel control with feedback provided by a universal exhaust gas oxygen sensor. The development of the engine included development of the control system and other engine components, as well as a substantial amount of steady-state and transient control system calibration work. This effort led to a final engine calibration which provides good efficiency and transient response while meeting CARB ULEV emissions levels.
Technical Paper

Simultaneous Application of Optical Spark Plug Probe and Head Gasket Ionization Probe to a Production Engine

1993-03-01
930464
The optical spark plug probe and ionization head gasket probe developed at Sandia Laboratories were applied to one cylinder of a production multicylinder automotive gasoline engine. The purpose of this application is to eventually study combustion phenomena leading to high emissions under cold start and cold idle conditions. As a first step in studying cold start combustion and emissions issues, diagnostic instrumentation was simultaneously applied to a production engine under steady state idle, road load and an intermediate load-speed condition. The preliminary application of such instrumentation is the subject of the present paper. The spark plug probe was redesigned for ease of use in production engines and to provide a more robust design. The two probes were geometrically oriented to obtain radial line-up between the optical windows and ionization probes. Data were taken simultaneously with both probes at the three load-speed conditions mentioned above.
X