Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Hydrocarbon Selective Catalytic Reduction Using a Silver-Alumina Catalyst with Light Alcohols and Other Reductants

2005-04-11
2005-01-1082
Previously reported work with a full-scale ethanol-SCR system featuring a Ag-Al2O3 catalyst demonstrated that this particular system has potential to reduce NOx emissions 80-90% for engine operating conditions that allow catalyst temperatures above 340°C. A concept explored was utilization of a fuel-borne reductant, in this case ethanol “stripped” from an ethanol-diesel micro-emulsion fuel. Increased tailpipe-out emissions of hydrocarbons, acetaldehyde and ammonia were measured, but very little N2O was detected. In the current increment of work, a number of light alcohols and other hydrocarbons were used in experiments to map their performance with the same Ag-Al2O3 catalyst. These exploratory tests are aimed at identification of compounds or organic functional groups that could be candidates for fuel-borne reductants in a compression ignition fuel, or could be produced by some workable method of fuel reforming.
Technical Paper

Caterpillar Automatic Code Generation

2004-03-08
2004-01-0894
Automatic code generation from models is actively used at Caterpillar for powertrain and machine control development. This technology was needed to satisfy the industry's demands for both increased software feature content, and its added complexity, and a short turn-around time. A pilot development effort was employed initially to roll out this new technology and shape the deployment strategy. As a result of a series of successful projects involving rapid prototyping and production code generation, Caterpillar will deploy MathWorks modeling and code generation products as their department-wide production development capability. The data collected indicated a reduction of person hours by a factor of 2 to 4 depending on the project and a reduction of calendar time by a factor of greater than 2. This paper discusses the challenges, results, and lessons learned, during this pilot effort from the perspectives of both Caterpillar and The MathWorks.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry

2003-03-03
2003-01-1043
Recent measurements by Siebers et al. have shown that the flame of a high pressure Diesel spray stabilizes under quiescent conditions at a location downstream of the fuel injector. The effects of various ambient and injection parameters on the flame “lift-off” length have been investigated under typical Diesel conditions in a constant-volume combustion vessel. In the present study, the experiments of Siebers et al. have been modeled using a modified version of the KIVA-3V engine simulation code. Fuel injection and spray breakup are modeled using the KH-RT model that accounts for liquid surface instabilities due to the Kelvin-Helmholtz and Rayleigh-Taylor mechanisms. Combustion is simulated using Convergent Thinking's recently developed detailed transient chemistry solver (SAGE) that allows for any number of chemical species and reactions to be modeled.
Technical Paper

Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

2002-03-04
2002-01-1158
A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NOx emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NOx emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NOx through controlled enhancement of in-cylinder mixing.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
Technical Paper

A Parametric Simulation Model for Analyzing the Performance of a Steel-Tracked Feller Buncher

1999-09-13
1999-01-2785
A parametric simulation model of a steel-tracked feller buncher was developed1. This model can be used to predict the lift capacity, side tipping angles, grade-ability, and joint forces during a cutting cycle. The feller buncher is defined parametrically, allowing the user to quickly analyze different machine configurations simply by changing the value of a variable. Several simulations were performed to illustrate the application of the model.
Technical Paper

Caterpillar Light Truck Clean Diesel Program

1999-04-27
1999-01-2243
In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge.
Technical Paper

A CFD Study of Losses in a Straight-Six Diesel Engine

1999-03-01
1999-01-0230
Using a previously validated and documented CFD methodology, this research simulated the flow field in the intake region (inlet duct, plenum, ports, valves, and cylinder) involving the four cylinders (#1, #3, #4, #6) of a straight-six IC engine. Each cylinder was studied with its intake valves set at high, medium and low valve lifts. All twelve viscous 3-D turbulent flow simulation models had high density, high quality computational grids and complete domains. Extremely fine grid density were applied for every simulation up to 1,000,000 finite volume cells. Results for all the cases presented here were declared “fully converged” and “grid independent”. The relative magnitude of total pressure losses in the entire intake region and loss mechanisms were documented here. It was found that the total pressure losses were caused by a number of flow mechanisms.
Technical Paper

Extended Oil Drain Performance Capabilities of Diesel Engine Oils

1998-10-19
982718
This paper describes the results of a comprehensive field-testing program conducted in modern low-emission heavy-duty diesel engines to evaluate the extended oil drain capabilities of several diesel engine oils of varying performance levels. The data generated in the 59-truck trial, which was conducted over a two to three year period, provide support for extension of engine oil drain intervals when a premium mineral diesel oil is used rather than a fighting-grade mineral diesel product. The field trial results also document the performance of a premium fully synthetic engine oil at four times conventional oil drain intervals. Engine inspections conducted after 500,000 test miles confirm that the extension of oil drain intervals with premium diesel engine oils has no negative impact on engine durability.
Technical Paper

Physical Metallurgy Applications and Enhanced Machinability of Microalloyed V-Ti-N Forging Steels

1998-02-23
980884
Medium-carbon, microalloyed forging steels represent a cost effective replacement of quenched and tempered grades. Their strength properties are derived from precipitation during cooling from the forging temperature. Because of the relatively high carbon content, vanadium is the most suitable addition to achieve precipitation strengthening. The effectiveness of vanadium is enhanced by the presence of nitrogen. For components subjected to impact loading, improvement in toughness is achieved by refining austenitic grains, pinning their boundaries by means of dispersed titanium nitrides. Precipitation strengthened ferrite-pearlite steels exhibit superior machinability compared to that of quenched and tempered alloy steels. As a result, the total machining costs are substantially reduced compared to the costs of machining heat-treated steels. The frequency of tool breakage and tool changes decrease dramatically, virtually eliminating line scrap and unnecessary downtime.
Technical Paper

Cylinder-to-Cylinder Variation of Losses in Intake Regions of IC Engines

1998-02-23
981025
Very large scale, 3D, viscous, turbulent flow simulations, involving 840,000 finite volume cells and the complete form of the time-averaged Navier-Stokes equations, were conducted to study the mechanisms responsible for total pressure losses in the entire intake system (inlet duct, plenum, ports, valves, and cylinder) of a straight-six diesel engine. A unique feature of this paper is the inclusion of physical mechanisms responsible for cylinder-to-cylinder variation of flows between different cylinders, namely, the end-cylinder (#1) and the middle cylinder (#3) that is in-line with the inlet duct. Present results are compared with cylinder #2 simulations documented in a recent paper by the Clemson group, Taylor, et al. (1997). A validated comprehensive computational methodology was used to generate grid independent and fully convergent results.
Technical Paper

Methane Jet Penetration in a Direct-Injection Natural Gas Engine

1998-02-01
980143
A direct-injection natural gas (DING) engine was modified for optical access to allow the use of laser diagnostic techniques to measure species concentrations and temperatures within the cylinder. The injection and mixing processes were examined using planar laser-induced fluorescence (PLIF) of acetone-seeded natural gas to obtain qualitative maps of the fuel/air ratio. Initial acetone PLIF images were acquired in a quiescent combustion chamber with the piston locked in a position corresponding to 90° BTDC. A series of single shot images acquired in 0.1 ms intervals was used to measure the progression of one of the fuel jets across the cylinder. Cylinder pressures as high as 2 MPa were used to match the in-cylinder density during injection in a firing engine. Subsequent images were acquired in a motoring engine at 600 rpm with injections starting at 30, 20, and 15° BTDC in 0.5 crank angle degree increments.
Technical Paper

Airflow and Thermal Analysis of Underhood Engine Enclosures

1994-03-01
940316
A numerical model that utilizes Computational Fluid Dynamics (CFD) techniques has been developed for the analysis of underhood engine cooling systems of large slow moving vehicles. Several physical models have been developed and incorporated into a CFD code including; a) a model for predicting pressure losses due to screens and grills; b) a model for approximating the forces exerted by the fan on the flow; and c) a model for calculating the heat transfer inside the radiator. The CFD code and physical models have been demonstrated and validated against experimental data. Several three dimensional computational grids that represent various engine enclosures have been created and used to analyze the fluid flow and heat transfer inside the engine enclosure system. The computational results are compared to test data which were obtained for this study.
Technical Paper

Concurrent Product and Process Design for Caterpillar Inboard Axles

1992-09-01
921661
Caterpillar's inboard brake and final drive axle responds to customers needs for a lifetime service brake removed from the often hostile environment encountered by exposed shoe-drum or caliper-disc brakes. A multi-disciplined team was assembled to select the single most appropriate axle configuration. That team was composed of members of the three worldwide facilities which would manufacture the axles. After selection of the configuration, the team approach was continued from development thru production. Concurrent product and process design was felt to be the most efficient way to provide the customer with an enclosed brake and to modernize our plants manufacturing operations. This paper will identify the methods used to develop a cost effective manufacturable axle. Working the product design and manufacturing process together provided for a more manufacturable axle, in a shorter time frame, with less start-up problems compared to the traditional approach.
Technical Paper

Implementation of a Second Generation Sound Power Test for Production Testing of Earthmoving Equipment

1989-05-01
891144
IMPLEMENTATION OF A SECOND GENERATION SOUND POWER TEST FOR PRODUCTION TESTING OF EARTHMOVING EQUIPMENT Caterpillar has developed an automated sound power measurement system that measures construction equipment sound levels before they leave the assembly plant. This paper describes the test system and gives the results of verification tests conducted at various manufacturing plants around the world. It was concluded that the new system allows Caterpillar to quickly and accurately acquire the data necessary to assure that their product meets its noise requirements.
Technical Paper

A Simulation of a Motorgrader Blade Lift Circuit

1988-04-01
880796
A mathematical model was developed to analyze an instability problem in a developmental motorgrader blade circuit. This dynamic computer model was verified when simulation results compared well to measured data. Solutions to the problem were found with the model. The best solution was verified with a vehicle test. This circuit included a variable pump, an implement valve, a lock valve, and a cylinder.
Technical Paper

Challenger 65: A New Force in the Field

1987-09-01
871640
The Challenger 65 agricultural tractor combines the best features of current four wheel drive machines; speed, on-road mobility, and operator comfort with the well recognized advantages of track-type machines; tractive efficiency and reduced soil compaction.
Technical Paper

The Caterpillar D9L Impact Ripper

1987-04-01
870779
Caterpillar has introduced a new concept that shatters previous ripping limitations. The D9L Impact Ripper has extended the ripping capacity and productivity of the standard ripper tractor in heavy construcion, mining, and quarry applications. This paper describes the design objectives, development program, component selection, and the demonstrated productivity of the D9L Impact Ripper.
X