Refine Your Search

Topic

Author

Search Results

Technical Paper

Combined CFD and CAA Simulations with Impedance Boundary Conditions

2021-08-31
2021-01-1048
In computational fluid dynamic (CFD) and computational aeroacoustics (CAA) simulations, the wall surface is normally treated as a purely reflective wall. However, some surface treatments are usually applied in experiments. Thus, the acoustic simulations cannot be validated by experimental results. One of the major challenges is how to define acoustically boundary conditions in a well-posed way. In aeroacoustics analysis, impedance is a quantity to characterize reflectivity and absorption of an acoustically treated surface, which may be introduced into the numerical models as a frequency-domain boundary condition. However, CFD and CAA simulations are time-domain computations, meaning the frequency-domain impedance boundary condition cannot be adopted directly. Several methods, including the three-parameter model, the z-transform method and the reflection coefficient model, were developed.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

2021-04-06
2021-01-0348
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
Journal Article

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

2021-04-06
2021-01-0303
This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

2019-04-02
2019-01-0837
The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Design of a Hybrid Honeycomb Unit Cell with Enhanced In-Plane Mechanical Properties

2019-04-02
2019-01-0710
Sandwich structures with honeycomb core are widely used in the lightweight design and impact energy absorption applications in automotive, sporting, and aerospace industries. Recently, the auxetic honeycombs with negative Poisson's ratio attract substantial attention for different engineering products. In this study, we implement Additive Manufacturing technology, experimental testing, and Finite Element Analysis (FEA) to design and investigate the mechanical behavior of a novel unit cell for sandwich structure core. The new core model contains the conventional and auxetic honeycomb cells beside each other to create a Hybrid Honeycomb (HHC) for the sandwich structure. The different designs of unit cells with the same volume fraction of 15% are 3D-printed using Fused Deposition Modeling technique, and the comparative study on the mechanical behavior of conventional honeycomb, auxetic honeycomb, and HHC structures is conducted.
Technical Paper

Design for Crashworthiness of Vehicle Structures Using an Extended Hybrid Cellular Automaton Method

2019-04-02
2019-01-0842
This paper introduces a design methodology to tailor the acceleration and displacement responses of a vehicle structure subjected to a dynamic crushing load. The proposed approach is an extension of the hybrid cellular automaton (HCA) method, through which the internal energy density is uniformly distributed within the structure. The proposed approach, referred here to as an extended HCA (xHCA) method, receives the suitable combinations of volume fraction and a finite element meta-parameter for which the algorithm synthesizes the load paths that allow the desired crash response. Lower meta-parameter values lead designs obtained by traditional optimizers, while larger values lead to designs obtained by the HCA method. Simultaneous implementation of multiple values of meta-parameters is presented here as a further development of xHCA method.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Journal Article

Prechamber Hot Jet Ignition of Ultra-Lean H2/Air Mixtures: Effect of Supersonic Jets and Combustion Instability

2016-04-05
2016-01-0795
An experiment has been developed to investigate the ignition characteristics of ultra-lean premixed H2/air mixtures by a supersonic hot jet. The hot jet is generated by combustion of a stoichiometric mixture in a small prechamber. The apparatus adopted a dual-chamber design in which a small-volume (1% of the main chamber by volume) prechamber was installed within a large-volume main chamber. A small orifice (nozzle) connects the two chambers. Spark initiated combustion inside the prechamber causes a pressure rise and pushes the gases though the nozzle, resulting in a hot jet that would ignite the lean mixture in the main chamber. Simultaneous high-speed Schlieren photography and OH* Chemiluminescence were applied to visualize the jet penetration and the ignition processes inside the main chamber. Hot Wire Pyrometry (HWP) was used to measure temperature distribution of the transient hot jet.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

2007-04-16
2007-01-0783
Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

A Novel Suspended Liner Test Apparatus for Friction and Side Force Measurement with Corresponding Modeling

2006-11-13
2006-32-0041
An experimental apparatus and a numerical model have been designed and developed to examine the lubrication condition and frictional losses at the piston and cylinder interface. The experimental apparatus utilizes components from a single cylinder, ten horsepower engine in a novel suspended liner arrangement. The test rig has been specifically designed to reduce the number of operating variables while utilizing actual components and geometry. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with experimental measurements and provide further insight into the sources of frictional losses. The results demonstrate the effects of speed and viscosity on the overall friction losses at the piston and cylinder liner interface. Comparisons between the experimental and analytical results show good agreement.
Technical Paper

The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings

2006-04-03
2006-01-0358
Rolling element bearings provide near frictionless relative motion between two rotating parts. Automotive transmissions use various ball and rolling element bearings to accommodate the relative motion between rotating elements. In order to understand changes in bearing performance due to the loads imposed through the transmission, advanced modeling of the bearing is required. This paper focuses on the effects of cage flexibility on bearing performance. A flexible cage model was developed and incorporated into a six degree-of-freedom dynamic, deep groove ball bearing model. A lumped mass approach was used to represent the cage flexibility and was validated through an ANSYS forced response analyses of the cage. Results from the newly developed Flexible Cage Model (FCM) and an identical numerical model employing a rigid bearing cage were compared to determine the effects of varying ball-to-cage pocket clearance and cage stiffness on cage motion and ball-to-cage pocket contact forces.
Technical Paper

Novel Force-Based High-Speed Three-Dimensional NASCAR Vehicle Model

2004-11-30
2004-01-3525
Typical vehicle dynamics simulations demand a trade-off between short computation times and accuracy. Many of the more simple models are based on the kinematic roll center and the more accurate models tend to be multi-body dynamics simulation programs. There is a need for a model that improves the accuracy of the kinematic roll center models while still maintaining short computation times. Such a model could be used track-side during races to guide race teams toward improved handling. The model presented in this paper removes many of the assumptions and limitations of the kinematic roll center model. The model accounts for three-dimensional forces present at the contact patch and predicts deflections of suspension components. The modeling approach is applied to a NASCAR Craftsman Truck to predict the effects of suspension design and tuning on steady-state understeer characteristics of the vehicle. Braking and acceleration forces can also be applied to the vehicle.
Technical Paper

Caterpillar Automatic Code Generation

2004-03-08
2004-01-0894
Automatic code generation from models is actively used at Caterpillar for powertrain and machine control development. This technology was needed to satisfy the industry's demands for both increased software feature content, and its added complexity, and a short turn-around time. A pilot development effort was employed initially to roll out this new technology and shape the deployment strategy. As a result of a series of successful projects involving rapid prototyping and production code generation, Caterpillar will deploy MathWorks modeling and code generation products as their department-wide production development capability. The data collected indicated a reduction of person hours by a factor of 2 to 4 depending on the project and a reduction of calendar time by a factor of greater than 2. This paper discusses the challenges, results, and lessons learned, during this pilot effort from the perspectives of both Caterpillar and The MathWorks.
X