Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Methodologies for Evaluating and Optimizing Multimodal Human-Machine-Interface of Autonomous Vehicles

2018-04-03
2018-01-0494
With the rapid development of artificial intelligence, autonomous driving technology will finally reshape an automotive industry. Although fully autonomous cars are not commercially available to common consumers at this stage, partially autonomous vehicles, which are defined as level 2 and level 3 autonomous vehicles by SAE J3016 standard, are widely tested by automakers and researchers. A typical Human-Machine-Interface (HMI) for a vehicle takes a form to support a human domination role. Although modern driving assistance systems allow vehicles to take over control at certain scenarios, the typical human-machine-interface has not changed dramatically for a long time. With deep learning neural network technologies penetrating into automotive applications, multi-modal communications between a driver and a vehicle can be enabled by a cost-effective solution.
Technical Paper

The Psychological and Accident Reconstruction “Thresholds” of Drivers' Detection of Relative Velocity

2014-04-01
2014-01-0437
Relative velocity detection thresholds of drivers are one factor that determines their ability to avoid rear-end crashes. Laboratory, simulator and driving studies show that drivers could scale relative velocity when it exceeded the threshold of about 0.003 rad/sec. Studies using accident reconstruction have suggested that the threshold may be about ten times larger. This paper discusses this divergence and suggests reasons for it and concludes that the lower value should be used as a true measure of the psychological threshold for detection of relative velocity.
Technical Paper

A Comparative Study of Automotive Side Window Occupant Containment Characteristics for Tempered and Laminated Glass

2006-04-03
2006-01-1492
This study investigates occupant containment characteristics of tempered and laminated automotive moveable side glass in rollover collisions. FMVSS 216 test protocols were used to induce roof damage or sheet metal damage around the window opening in Lincoln Navigators equipped with tempered and laminated side glass. Dummy-drop tests were then performed to investigate relative containment. The results demonstrate that, for rollovers in which the window structure is compromised, tempered side glass and laminated side glass perform comparably relative to occupant containment. Also discussed are the general strength characteristics of different types of glass construction, the availability of laminated side glass in recent model U.S. vehicles, and anecdotal data supporting the conclusions of testing.
Technical Paper

Put the Intelligence in the System, Not in the Vehicles

1999-08-17
1999-01-2953
A unique system would solve traffic, fossil-fuel depletion, and environmental problems. Dual-mode private and commercial vehicles would be manually driven on streets and automatically controlled on maglev guideways. Busses and freight vehicles without wheels or drivers also used. Proposed guideway speeds: 100kph in cities, and 325kph between cities. System would be safer and have much higher capacity than existing highways or proposed “smart car” systems. One-third meter clearance between cars to be achieved by linear synchronous-motor propulsion. Capacity of single 100kph guideway to equal that of twelve highway lanes, and one 325kph guideway would be equivalent to forty highway lanes.
Technical Paper

The Hydrocycle Rocket Free-Piston Instant-Conversion Adiabatic Engine and One-Range, Infinitely Variable Hydrostatic Transmission System

1996-02-01
960089
The ideal internal-combustion crankshaft engine would burn all the fuel near top center without detonation, then expand the whole charge until exhaust Both events are impossible with current piston engines. The Hydrocycle Rocket Piston Engine concept employs a free piston in the head of a two-stroke-cycle engine. Combustion between the crank piston and the free piston allows direct conversion of combustion fluid expansion to hydrostatic fluid flow and accumulator gas compression with perfect timing and minimum thermal and mechanical losses. An infinitely variable, radial hydrostatic motor gives the driver smooth, gas-cushioned acceleration and stepless performance. Maximum economy is attained since the driver is forced to run the engine at optimum minimum speed to match road load oadin all traffic conditions.
Technical Paper

Overview of the Driver Performance Data Book

1987-02-23
870346
This paper presents an overview of the Driver Performance Data Book under preparation by the National Highway Traffic Safety Administration (NHTSA). It includes a brief discussion of the purpose of the Data Book, the restrictions placed on the development effort, and how it is expected that it will be used by Agency personnel and others. Sample pages from the document are reproduced to illustrate the basic format, and the Table of Contents of each section is presented to identify the major topics covered and indicate the number of pages devoted to each.
X