Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

The Role of Carboxylate-Based Coolants in Cast Iron Corrosion Protection

2001-03-05
2001-01-1184
Nitrites have long been added to heavy-duty coolant to inhibit iron cylinder liner corrosion initiated by cavitation. However, in heavy-duty use, nitrites deplete from the coolant, which then must be refortified using supplemental coolant additives (SCA's). Recently, carboxylates have also been found to provide excellent cylinder liner protection in heavy-duty application. Unlike nitrites, carboxylate inhibitors deplete slowly and thus do not require continual refortification with SCA's. In the present paper laboratory aging experiments shed light on the mechanism of cylinder liner protection by these inhibitors. The performance of carboxylates, nitrites and mixtures of the two inhibitors are compared. Results correlate well with previously published fleet data. Specifically, rapid nitrite and slow carboxylate depletion are observed. More importantly, when nitrite and carboxylates are used in combination, nitrite depletion is repressed while carboxylates deplete at a very slow rate.
Technical Paper

Rolling Bearings for High Performance Hydrostatic Drives Using Water Glycol Based Hydraulic Fluids

2000-09-11
2000-01-2588
Hydraulic fluids of the HFC category are aqueous polymer solutions with a fire resistance enhancing water content of 35 to approx. 50 %. The use of HFC fluids, above all in mobile and stationary drives in mining and in casting is subject to restrictions resulting from a number of features of a fluid. Field practice has shown that while axial-piston pumps may be successfully operated using HFC fluids, rolling bearing failures reduce their operational lifetimes. The bearing failures essentially result from material fatigue. This can be remedied by new quality steel for roller bearings. The combination of high fatigue life and corrosion resistance assures a wide application range for nitrogen-treated steel qualities.
Technical Paper

Fatigue Properties of Die Cast Magnesium Alloys

2000-03-06
2000-01-1122
This paper provides a review of the fatigue properties reported in the open literature for die cast magnesium-based alloys. Recently developed fatigue data, in the form of stress versus number of cycles to failure for bending fatigue (R=-1), are presented for die cast AM60B and AZ91D alloy specimens with thicknesses between 1 and 10 mm. The effects of specimen thickness and macrostructural features, such as porosity distributions and surface features (parting line and ejection pin marks), on the fatigue data are discussed.
Technical Paper

Effects of Section Size and Microstructural Features on the Mechanical Properties of Die Cast AZ91D and AM60B Magnesium Alloy Test Bars

1999-03-01
1999-01-0927
Reported tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys indicate that those values depend on the size and shape of the test samples and their global porosities. This paper reviews the mechanical properties reported in the open literature for these die cast alloys and indicates that section thickness and global porosity are inadequate for predicting the tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys.
Technical Paper

Microstructural Characteristics of Die Cast AZ91D and AM60 Magnesium Alloys

1999-03-01
1999-01-0928
Die cast AZ91D and AM60 magnesium alloy components are finding increasing usage in automotive applications. Both hot and cold chamber die cast components of these alloys generally exhibit several common microstructural features, including “skin”, porosity banding, and porosity distributed about the component centerline. Methods for quantitatively characterizing these microstructural features are described and representative values for skin thicknesses, porosity band dimensions and porosity band locations from selected die castings will be presented. The expected influence of these common microstrucutral features on mechanical properties and acceptability of die cast magnesium components for given applications are discussed.
X