Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Technical Paper

Brake Control Allocation Employing Vehicle Motion Feedback for Four-Wheel-Independent-Drive Vehicle

2023-11-05
2023-01-1866
This paper uses the brake control allocation method for Electric Vehicles (EVs) based on system-level vehicle Reference Point (RP) motion feedback. The RP motion control is an alternative to the standard brake torque allocation methods and results in improved vehicle stability in both longitudinal and lateral directions without requiring additional measurements beyond what is available in EVs with ABS and ESP. The proposed control law simplifies the brake torque allocation algorithm, reduces overall development time and effort, and merges most of the braking systems into one. Additionally, the measured or estimated signals required are reduced compared to the standard approach. The system-level RP measurements and references are transformed into individual wheel coordinate systems, where tracking is ensured by actuating both friction torques and electric motor regenerative torques using a proposed brake torque blending mechanism.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Technical Paper

Ducted Fuel Injection: An Experimental Study on Optimal Duct Size

2022-03-29
2022-01-0450
Ducted fuel injection (DFI), a concept that utilizes fuel injection through ducts, was implemented in a constant pressure High Temperature Pressure Vessel at 60 bar ambient pressure, 800-1000 K ambient temperature, and 21 % oxygen. The ducts were 14 mm long and placed 3-4.7 mm from the orifice exit. The duct diameters ranged from 1.6-3.2 mm and had a rounded inlet and a tapered outlet. Diesel fuel was used in single-orifice fuel injectors operating at 250 MPa rail pressure. The objective of this work was to study soot reduction for various combinations of orifice and duct diameters. A complete data set was taken using the 150 μm orifice. A smaller data set was acquired for a 219 μm orifice, showing similar trends. Soot reduction peaked at an optimal duct diameter of 2-2.25 mm, corresponding to an 85-90 % spray area reduction for the 150 μm orifice. Smaller or larger duct diameters were less effective. Duct diameter had a minimal effect on ignition delay.
Technical Paper

Performance and Emission Results from a Heavy-Duty Diesel Engine with Ducted Fuel Injection

2021-04-06
2021-01-0503
Ducted fuel injection (DFI) was tested for the first time in a heavy-duty diesel metal engine. It was implemented on a Caterpillar 2.5-liter single-cylinder heavy-duty diesel engine fitted with a common rail fuel system and a Tier 4 final production piston. Engine tests consisted of single-injection timing sweeps at A100 and C100, where rail pressure and exhaust gas recirculation (EGR) were also varied. A 6-hole fuel injector tip with 205 am orifices was used with a 130° spray angle and rail pressures up to 250 MPa. The ducts were 14 mm long, had a 2.5 mm inner diameter, and were placed 3.8 mm away from the orifice exits. The ducts were attached to a base, which in turn was attached to the cylinder head with bolts. Furthermore, alignment of the ducts and their corresponding fuel jets was accomplished.
Technical Paper

A Hybrid Heavy-Duty Diesel Power System for Off-Road Applications - Concept Definition

2021-04-06
2021-01-0449
A multi-year Power System R&D project was initiated with the objective of developing an off-road hybrid heavy-duty concept diesel engine with front end accessory drive-integrated energy storage. This off-road hybrid engine system is expected to deliver 15-20% reduction in fuel consumption over current Tier 4 Final-based diesel engines and consists of a downsized heavy-duty diesel engine containing advanced combustion technologies, capable of elevated peak cylinder pressures and thermal efficiencies, exhaust waste heat recovery via SuperTurbo™ turbocompounding, and hybrid energy recovery through both mechanical (high speed flywheel) and electrical systems. The first year of this project focused on the definition of the hybrid elements using extensive dynamic system simulation over transient work cycles, with hybrid supervisory controls development focusing on energy recovery and transient load assist, in Caterpillar’s DYNASTY™ software environment.
Technical Paper

Improved Method for Studying MCCI Flame Interactions with an Engine Combustion Chamber

2021-04-06
2021-01-0507
An improved method for studying mixing-controlled compression ignition (MCCI) flame interactions with an engine combustion chamber has been developed. It is implemented in a constant pressure vessel, which contains a portion of a piston and a portion of a cylinder head, where the cylinder head is emulated by a transparent fused silica window. This method allows for vaporizing or combusting fuel jets to be imaged from two orthogonal directions. The piston and cylinder head can be adjusted to emulate in-engine piston positions from top dead center (TDC) to approximately 15 mm away from TDC. The design allows for pistons from engine bore sizes up to approximately 175 mm to be studied, including the ability to simulate injector spray included angles from 120°-180°. In this study, the piston was made as an extruded piston bowl profile, where the length of the extrusion approximated the arc length between two neighboring jets from a 6-hole injector.
Technical Paper

A New Generation Lean Gasoline Engine for Premium Vehicle CO2 Reduction

2021-04-06
2021-01-0637
In an era of rapidly increasing vehicle electrification, the gasoline engine remains a vital part of the passenger car powertrain portfolio. Lean-burn combustion is a formidable means for reducing the CO2 emissions of gasoline engines but demands the use of sophisticated emissions control. A 2.0 litre turbocharged direct-injection gasoline engine has been developed with a lean homogeneous combustion system matched to a robust lean and stoichiometric-capable exhaust aftertreatment. The aftertreatment system includes an SCR system and a GPF with filtration down to 10 nm particle size. The engine is equipped with a continuously variable valve-lift system, high-tumble ports and a high-energy ignition system; the boosting system comprises a variable geometry turbocharger and a 48 V electrical supercharger. The work reported formed part of the PaREGEn (Particle Reduced, Efficient Gasoline Engines) project under the Horizon 2020 framework programme.
Journal Article

Investigation of the Relative Performance of Vaned and Vaneless Mixed Flow Turbines for Medium and Heavy-Duty Diesel Engine Applications with Pulse Exhaust Systems

2021-04-06
2021-01-0644
This paper details results of a numerical and experimental investigation into the relative performance of vaned and vaneless mixed flow turbines for application to medium and heavy-duty diesel engines utilizing pulse exhaust systems. Previous investigations into the impact of nozzle vanes on turbine performance considered only open turbine housings, whereas a majority of medium and heavy-duty diesel engine applications are six-cylinder engines using pulse exhaust systems with divided turbines. The two turbine stages for this investigation were carefully designed to meet the constraints of engines with pulse exhaust systems and to control confounding factors that would undermine the vaned vs vaneless performance comparison. Detailed CFD analysis and turbine dynamometer test results confirm a significant efficiency advantage for the vaned turbine stage under both full and partial admission conditions.
Technical Paper

Predictive GT-Power Simulation for VNT Matching to EIVC Strategy on a 1.6 L Turbocharged GDI Engine

2019-04-02
2019-01-0192
The use of early intake valve closing (EIVC) can lead to improvements in spark-ignition engine efficiency. One of the greatest barriers facing adoption of EIVC for high power-density applications is the challenge of boosting as EIVC strategies reduce volumetric efficiency. Turbochargers with variable nozzle turbines (VNT) have recently been developed for gasoline applications operating at high exhaust gas temperatures. The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some EIVC applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, compression ratios and fuel types.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Numerical Study of Turbine Housing Divider Wall Using Two-Dimensional Model

2019-04-02
2019-01-0817
Turbine housing divider wall design is critical to guarantee a sufficient lifetime. A numerical simulation is a necessary step toward the understanding of behaviors of divider wall subjected to cyclic thermal loading. Calculating the temperature and plastic strain distribution at the divider wall, steady state and transient, can predict crack initiation. A two-dimensional finite element model for divider wall has been developed, which takes into account transient state film heat transfer convection, temperature-dependent strain hardening behavior and cyclic thermal loads. A three-dimensional model is also presented to validate this model. Simulation results include temperature and plastic strain at divider wall are compared. The paper also studies the influences of turbine housing wall thickness, divider wall thickness and the connection angle between both walls on divider wall.
Technical Paper

Methodology to Perform Conjugate Heat Transfer Modeling for a Piston on a Sector Geometry for Direct-Injection Internal Combustion Engine Applications

2019-04-02
2019-01-0210
The increase in computational power in recent times has led to multidimensional computational fluid dynamics (CFD) modeling tools being used extensively for optimizing the diesel engine piston design. However, it is still common practice in engine CFD modeling to use constant uniform boundary temperatures. This is either due to the difficulty in experimentally measuring the component temperatures or the lack of measurements when simulation is being used predictively. This assumption introduces uncertainty in heat flux predictions. Conjugate heat transfer (CHT) modeling is an approach used to predict the component temperatures by simultaneously modeling the heat transfer in the fluid and the solid phase. However, CHT simulations are computationally expensive as they require more than one engine cycle to be simulated to converge to a steady cycle-averaged component temperature.
Journal Article

Ducted Fuel Injection: Effects of Stand-Off Distance and Duct Length on Soot Reduction

2019-04-02
2019-01-0545
Ducted fuel injection (DFI) has been shown to be an effective method to significantly reduce soot formation in mixing controlled compression ignition (MCCI) diesel combustion. This reduction has been demonstrated in both combustion vessels and in an optical engine. The mechanisms driving the soot reduction are to date not fully understood. Optimal duct configurations are also not immediately evident. The objective of this study is to show the effects of two geometric variables, namely distance from fuel injector orifice exit to duct inlet (0.1-6 mm) for a 2x14 mm duct, and duct length variation (8-14 mm) at a given stand-off distance of 0.1 mm. A 138 μm on-axis single-orifice injector operated at 100-250 MPa was used in a heated, continuous flow, constant pressure vessel with optical access.
Technical Paper

A New Twin-Scroll Turbine Housing Design with Improved Reliability

2019-04-02
2019-01-0942
Twin-scroll turbine housing with divider wall in turbocharger promises to increase low-end torque, improve boost response and maximize turbine efficiency. This paper proposes a new twin-scroll turbine housing design. The unique design feature is first introduced. Numerical simulation which takes into account transient state film heat transfer convection, temperature-dependent strain hardening behavior and cyclic thermal loads are carried out for both traditional and the new design. Simulation results include temperature, stress and plastic strain at divider wall are compared and analyzed as well which indicate the new turbine housing has improved reliability at divider wall. This study reveals how to obtain a robust turbine housing divider wall and provides a knowledge base for the design and use of divider wall.
Journal Article

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm.
Journal Article

Early Investigation of Ducted Fuel Injection for Reducing Soot in Mixing-Controlled Diesel Flames

2018-04-03
2018-01-0238
Ducted fuel injection (DFI) is a developing technology for reducing in-cylinder soot formed during mixing-controlled combustion in diesel compression ignition engines. Fuel injection through a small duct has the effect of extending the lift-off length (LOL) and reducing the equivalence ratio at ignition. In this work, the feasibility of DFI to reduce soot and to enable leaner lifted-flame combustion (LLFC) is investigated for a single diesel jet injected from a 138 μm orifice into engine-like (60-120 bar, 800-950 K) quiescent conditions. High-speed imaging and natural luminosity (NL) measurements of combusting sprays were used to quantify duct effects on jet penetration, ignition delay, LOL, and soot emission in a constant pressure high-temperature-pressure vessel (HTPV). At the highest ambient pressure and temperatures tested, soot luminosity was reduced by as much as 50%.
Technical Paper

Methodologies for Evaluating and Optimizing Multimodal Human-Machine-Interface of Autonomous Vehicles

2018-04-03
2018-01-0494
With the rapid development of artificial intelligence, autonomous driving technology will finally reshape an automotive industry. Although fully autonomous cars are not commercially available to common consumers at this stage, partially autonomous vehicles, which are defined as level 2 and level 3 autonomous vehicles by SAE J3016 standard, are widely tested by automakers and researchers. A typical Human-Machine-Interface (HMI) for a vehicle takes a form to support a human domination role. Although modern driving assistance systems allow vehicles to take over control at certain scenarios, the typical human-machine-interface has not changed dramatically for a long time. With deep learning neural network technologies penetrating into automotive applications, multi-modal communications between a driver and a vehicle can be enabled by a cost-effective solution.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
X