Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Technical Paper

Ducted Fuel Injection: An Experimental Study on Optimal Duct Size

2022-03-29
2022-01-0450
Ducted fuel injection (DFI), a concept that utilizes fuel injection through ducts, was implemented in a constant pressure High Temperature Pressure Vessel at 60 bar ambient pressure, 800-1000 K ambient temperature, and 21 % oxygen. The ducts were 14 mm long and placed 3-4.7 mm from the orifice exit. The duct diameters ranged from 1.6-3.2 mm and had a rounded inlet and a tapered outlet. Diesel fuel was used in single-orifice fuel injectors operating at 250 MPa rail pressure. The objective of this work was to study soot reduction for various combinations of orifice and duct diameters. A complete data set was taken using the 150 μm orifice. A smaller data set was acquired for a 219 μm orifice, showing similar trends. Soot reduction peaked at an optimal duct diameter of 2-2.25 mm, corresponding to an 85-90 % spray area reduction for the 150 μm orifice. Smaller or larger duct diameters were less effective. Duct diameter had a minimal effect on ignition delay.
Technical Paper

Improved Method for Studying MCCI Flame Interactions with an Engine Combustion Chamber

2021-04-06
2021-01-0507
An improved method for studying mixing-controlled compression ignition (MCCI) flame interactions with an engine combustion chamber has been developed. It is implemented in a constant pressure vessel, which contains a portion of a piston and a portion of a cylinder head, where the cylinder head is emulated by a transparent fused silica window. This method allows for vaporizing or combusting fuel jets to be imaged from two orthogonal directions. The piston and cylinder head can be adjusted to emulate in-engine piston positions from top dead center (TDC) to approximately 15 mm away from TDC. The design allows for pistons from engine bore sizes up to approximately 175 mm to be studied, including the ability to simulate injector spray included angles from 120°-180°. In this study, the piston was made as an extruded piston bowl profile, where the length of the extrusion approximated the arc length between two neighboring jets from a 6-hole injector.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Journal Article

Ducted Fuel Injection: Effects of Stand-Off Distance and Duct Length on Soot Reduction

2019-04-02
2019-01-0545
Ducted fuel injection (DFI) has been shown to be an effective method to significantly reduce soot formation in mixing controlled compression ignition (MCCI) diesel combustion. This reduction has been demonstrated in both combustion vessels and in an optical engine. The mechanisms driving the soot reduction are to date not fully understood. Optimal duct configurations are also not immediately evident. The objective of this study is to show the effects of two geometric variables, namely distance from fuel injector orifice exit to duct inlet (0.1-6 mm) for a 2x14 mm duct, and duct length variation (8-14 mm) at a given stand-off distance of 0.1 mm. A 138 μm on-axis single-orifice injector operated at 100-250 MPa was used in a heated, continuous flow, constant pressure vessel with optical access.
Journal Article

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm.
Journal Article

Early Investigation of Ducted Fuel Injection for Reducing Soot in Mixing-Controlled Diesel Flames

2018-04-03
2018-01-0238
Ducted fuel injection (DFI) is a developing technology for reducing in-cylinder soot formed during mixing-controlled combustion in diesel compression ignition engines. Fuel injection through a small duct has the effect of extending the lift-off length (LOL) and reducing the equivalence ratio at ignition. In this work, the feasibility of DFI to reduce soot and to enable leaner lifted-flame combustion (LLFC) is investigated for a single diesel jet injected from a 138 μm orifice into engine-like (60-120 bar, 800-950 K) quiescent conditions. High-speed imaging and natural luminosity (NL) measurements of combusting sprays were used to quantify duct effects on jet penetration, ignition delay, LOL, and soot emission in a constant pressure high-temperature-pressure vessel (HTPV). At the highest ambient pressure and temperatures tested, soot luminosity was reduced by as much as 50%.
Technical Paper

Methodologies for Evaluating and Optimizing Multimodal Human-Machine-Interface of Autonomous Vehicles

2018-04-03
2018-01-0494
With the rapid development of artificial intelligence, autonomous driving technology will finally reshape an automotive industry. Although fully autonomous cars are not commercially available to common consumers at this stage, partially autonomous vehicles, which are defined as level 2 and level 3 autonomous vehicles by SAE J3016 standard, are widely tested by automakers and researchers. A typical Human-Machine-Interface (HMI) for a vehicle takes a form to support a human domination role. Although modern driving assistance systems allow vehicles to take over control at certain scenarios, the typical human-machine-interface has not changed dramatically for a long time. With deep learning neural network technologies penetrating into automotive applications, multi-modal communications between a driver and a vehicle can be enabled by a cost-effective solution.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

The Psychological and Statistical Design Method for Co-Creation HMI Applications in the Chinese Automotive Market

2017-03-28
2017-01-0650
The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Technical Paper

Investigating Limitations of a Two-Zone NOx Model Applied to DI Diesel Combustion Using 3-D Modeling

2016-04-05
2016-01-0576
A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
Technical Paper

Numerical Simulation and Experimental Verification of Gasoline Intake Port Design

2015-04-14
2015-01-0379
The hybrid vehicle engines modified for high exhaust gas recirculation (EGR) is a good choice for high efficiency and low NOx emissions. However, high EGR will dilute the engine charge and may cause serious performance problems, such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. To achieve the goal of increasing tolerance to EGR, this work reports a CFD investigation of high tumble intake port design using STAR-CD. The validations had been performed through the comparison with PIV experimental tests.
Journal Article

The Big Data Application Strategy for Cost Reduction in Automotive Industry

2014-09-30
2014-01-2410
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Field Testing of High Biodiesel Blends on Engine and Aftertreatement Durability, Performance, and Maintenance in an On-Highway Application

2013-04-08
2013-01-0511
This paper features an application study on the impact of different blend levels of commercially-supplied biodiesel on engine and aftertreatment systems' durability and reliability as well as the impact on owning and operating factors: service intervals and fuel economy. The study was conducted on a bus application with a 2007 on highway emissions equipped engine running biodiesel blends of B5, B20, and B99 for a total period approaching 4500 hours. Biodiesel of waste cooking grease feedstock was used for the majority of the testing, including B5 and B20 blends. Biodiesel of soybean feedstock was used for testing on B99 blend. No negative impacts on engine and aftertreatment performance and durability or indication of future potential issues were found when using B5 and B20. For B99 measurable impacts on engine and aftertreatment performance and owning and operating cost were observed.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Technical Paper

Identification and Reduction of Booming Noise on a Motor Grader

2011-05-17
2011-01-1729
NVH is gaining importance in the quality perception of off-highway machines' performance and operator comfort. Booming noise, a low frequency NVH phenomenon, can be a significant sound issue in a motor grader when it is used under certain operating conditions that cause low frequency excitations to the machine. In order to increase operator comfort by decreasing the noise levels and noise annoyance, both simulation and testing techniques were leveraged to reduce the booming noise of a motor grader. Simultaneous structural/acoustics simulations and experimental modal tests were performed to evaluate this phenomenon. The simulation models were validated using test results and then used to evaluate solutions to this noise problem. Further field tests confirmed the validity of these recommended solutions.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
X