Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Innovative Zero-Emissions Braking System: Performance Analysis Through a Transient Braking Model

2024-04-09
2024-01-2553
This paper presents the analysis of an innovative braking system as an alternative and environmentally friendly solution to traditional automotive friction brakes. The idea arose from the need to eliminate emissions from the braking system of an electric vehicle: traditional brakes, in fact, produce dust emissions due to the wear of the pads. The innovative solution, called Zero-Emissions Driving System (ZEDS), is a system composed of an electric motor (in-wheel motor) and an innovative brake. The latter has a geometry such that it houses MagnetoRheological Fluid (MRF) inside it, which can change its viscous properties according to the magnetic field passing through it. It is thus an electro-actuated brake, capable of generating a magnetic field passing through the fluid and developing braking torque. A performance analysis obtained by a simulation model built on Matlab Simulink is proposed.
Technical Paper

Procedures for Experimental Characterization of Thermal Properties in Li-Ion Battery Modules and Parameters Identification for Thermal Models

2024-04-09
2024-01-2670
Concerns about climate change have significantly accelerated the process of vehicle electrification to improve the sustainability of the transportation sector. Increasing the adoption of electrified vehicles is closely tied to the advancement of reliable energy storage systems, with lithium-ion batteries currently standing as the most widely employed technology. One of the key technical challenges for reliability and durability of battery packs is the ability to accurately predict and control the temperature of the cells and temperature gradient between cells inside the pack. For this reason, accurate models are required to predict and control the cell temperature during driving and charging operations. This work presents a set of procedures tailored to characterize and measure the thermal properties in li-ion cells and modules.
Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
Technical Paper

Electrification and Control of a 1:5 Scale Vehicle for Automotive Testing Methodologies

2024-04-09
2024-01-2271
The design and testing of innovative components and control logics for future vehicular platform represents a challenging task in the automotive field. The use of scale model vehicles constitutes an interesting alternative for testing assessment by decreasing time and cost efforts with a potential benefit in terms of safety. The target of this research work is the development of a customized scale vehicle platform for verifying and validating innovative control strategies in safe conditions and with cost reduction. Consequently, the electrification of a radio-controlled 1:5 scale vehicle is carried out and a customized remote real-time controller is installed onboard. One of the main features of this commercial product is its modular characteristics that allows the modification of some component properties, such as the viscous coefficient of the shock absorbers, the stiffness of the springs and the suspension geometry.
Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Improving the Feasibility of Electrified Heavy-Duty Truck Fleets with Dynamic Wireless Power Transfer

2023-08-28
2023-24-0161
This study assesses the capabilities of dynamic wireless power transfer with respect to range extension and payload capacity of heavy-duty trucks. Currently, a strong push towards tailpipe CO2 emissions abatement in the heavy-duty transport sector by policymakers is driving the development of battery electric trucks. Yet, battery-electric heavy-duty trucks require large battery packs which may reduce the payload capacity and increase dwell time at charging stations, negatively affecting their acceptance among fleet operators. By investigating various levels of development of wireless charging technology and exploring various deployment scenarios for an electrified highway lane, the potential for a more efficient and environmentally friendly battery sizing was explored.
Technical Paper

Improving Computational Efficiency for Energy Management Systems in Plug-in Hybrid Electric Vehicles Using Dynamic Programming based Controllers

2023-08-28
2023-24-0140
Reducing computational time has become a critical issue in recent years, particularly in the transportation field, where the complexity of scenarios demands lightweight controllers to run large simulations and gather results to study different behaviors. This study proposes two novel formulations of the Optimal Control Problem (OCP) for the Energy Management System of a Plug-in Hybrid Electric Vehicle (PHEV) and compares their performance with a benchmark found in the literature. Dynamic Programming was chosen as the optimization algorithm to solve the OCP in a Matlab environment, using the DynaProg toolbox. The objective is to address the optimality of the fuel economy solution and computational time. In order to improve the computational efficiency of the algorithm, an existing formulation from the literature was modified, which originally utilized three control inputs.
Technical Paper

Real Time Modelling of Automotive Electric Drives for Hardware-in-the-Loop Applications

2023-08-28
2023-24-0028
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine.
Technical Paper

Battery Electric Vehicle Control Strategy for String Stability Based on Deep Reinforcement Learning in V2V Driving

2023-08-28
2023-24-0173
This works presents a Reinforcement Learning (RL) agent to implement a Cooperative Adaptive Cruise Control (CACC) system that simultaneously enhances energy efficiency and comfort, while also ensuring string stability. CACC systems are a new generation of ACC which systems rely on the communication of the so-called ego-vehicle with other vehicles and infrastructure using V2V and/or V2X connectivity. This enables the availability of robust information about the environment thanks to the exchange of information, rather than their estimation or enabling some redundancy of data. CACC systems have the potential to overcome one typical issue that arises with regular ACC, that is the lack of string stability. String stability is the ability of the ACC of a vehicle to avoid unnecessary fluctuations in speed that can cause traffic jams, dampening these oscillations along the vehicle string rather than amplifying them.
Technical Paper

Development of a Digital Twin to Support the Calibration of a Highly Efficient Spark Ignition Engine

2023-06-26
2023-01-1215
The role of numerical simulations in the development of innovative and sustainable powertrains is constantly growing thanks to their capabilities to significantly reduce the calibration efforts and to point out potential synergies among different technologies. In such a framework, this paper describes the development of a fully physical 1D-CFD engine model to support the calibration of the highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. The availability of a reliable simulation platform is essential to effectively exploit the combination of the several features introduced to achieve the project target of 47% peak gross indicated efficiency, such as SwumbleTM in-cylinder charge motion, Miller cycle combined with high Compression Ratio (CR), lean mixture exploiting cooled low pressure Exhaust Gas Recirculation (EGR) and electrified turbocharging.
Technical Paper

Development of a Gear Backlash Compensator for Electric Machines in P0-P4 Parallel Hybrid Drivelines

2023-04-11
2023-01-0454
Backlash is the movement between the gear teeth that allows them to mate without binding. Backlash can cause large torque fluctuations in vehicle powertrains when the input torque changes direction. These fluctuations cause a jerk and shuddering, which negatively affects drive quality. Input torque frequently changes direction in electric vehicles due to regenerative braking. Limiting zero crossings is an option for better drive quality; however, this leads to decreased vehicle efficiency. Because of this, modulating the torque through the backlash region is preferred, yet, if done poorly, it can result in sluggish torque response. This paper proposes a torque-shaping algorithm for an electric motor and gear/differential system to reduce backlash in electric vehicles. The control algorithm modulates the commanded torque’s rate of change based on the vehicle speed and zero-crossing torque.
Technical Paper

PSD Profiles for Dynamic and Durability Tests of Military Off-Road Vehicle Racks

2023-04-11
2023-01-0107
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimisation to provide easy access to many types of equipment required on-board. In this field, racks hung to the cabin chassis are generally used to support several electronic systems, like radios. The dynamic loads on a rack can reach high values in the operative conditions of a military vehicle. Rack failures should be prevented for the safety of driver, crew and load and the successful execution of a mission. Therefore, dynamic and durability tests of these components, including the fixtures to the vehicle, are required.
Technical Paper

Comprehensive Design Methodology of a Vehicle Monocoque: From Vehicle Dynamics to Manufacturing

2023-04-11
2023-01-0600
Climate change has become a real problem in our world. Society is trying to contain it as much as possible, promoting more sustainable behaviors and limiting pollution. For the automotive industry, this leads to progressive electrification and reduction of tailpipe emissions and fuel consumption for conventional vehicles. In this framework, this paper presents the design of a vehicle to compete in the Urban Concept category of Shell Eco Marathon, a competition among universities that has the goal to release a vehicle with the lowest possible fuel consumption. This work describes the monocoque design phases of the vehicle JUNO. The complete design approach is described, through the analysis of the decisional workflow adopted to integrate every technical solution from the aerodynamic constraints to the structural ones passing from the vehicle dynamic requirements.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
X