Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Injection Strategy Optimization for a Light Duty DI Diesel Engine in Medium Load Conditions with High EGR rates

2009-04-20
2009-01-1441
Further restrictions on NOx emissions and the extension of current driving cycles for passenger car emission regulations to higher load operation in the near future (such as the US06 supplement to the FTP-75 driving cycle) requires attention to low emission combustion concepts in medium to high load regimes. One possibility to reduce NOx emissions is to increase the EGR rate. The combustion temperature-reducing effects of high EGR rates can significantly reduce NO formation, to the point where engine-out NOx emissions approach zero levels. However, engine-out soot emissions typically increase at high EGR levels, due to the reduced soot oxidation rates at reduced combustion temperatures and oxygen concentrations.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
X