Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Automated Highway Driving Motion Decision Based on Optimal Control Theory

2020-04-14
2020-01-0130
According to driving scenarios, intelligent vehicle is mainly applied on urban driving, highway driving and close zone driving, etc. As one of the most valuable developments, automated highway driving has great progress. This paper focuses on automated highway driving decision, and considering decision efficiency and feasibility, a hierarchical motion planning algorithm based on dynamic programming was proposed, and simultaneously, road coordinate transformation methods were developed to deal with complex road conditions. At first, all transportation user states are transformed into straight road coordinate to simplify modeling and planning, then a set of candidate paths with Bezier form was developed and with the help of obstacles motion prediction, the feasible target paths with collision-free were remains, and via comparing vehicle performance for feasible path, the optimal driving trajectory was generated.
Technical Paper

Integrated Brake Squeal with Induced Thermal Stress Analysis

2017-06-05
2017-01-1900
Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
Technical Paper

A Trajectory Planning and Fuzzy Control for Autonomous Intelligent Parking System

2017-03-28
2017-01-0032
This paper proposed a two-section trajectory planning algorithm. In this trajectory planning, sigmoid function is adopted to fit two tangent arcs to meet limited parking spaces by reducing the radius of turning. Then the transverse preview model is established and the path tracking errors including distance error and angle error are estimated. The weight coefficient is considered to distribute the impact factor of traverse distance error or traverse angle error in the total error. The fuzzy controller is designed to track the two-section trajectory in autonomous intelligent parking system. The fuzzy controller is developed due to its real-time and robustness in the parking process. Traverse errors and its first-order derivative are selected as input variables and the outer wheel steering angle is selected as the output variable in fuzzy controller. They are also divided into seven fuzzy sets. Finally, forty rules are decided to achieve effective trajectory tracking.
Technical Paper

Multi Objective Optimization of Vehicle Crashworthiness Based on Combined Surrogate Models

2017-03-28
2017-01-1473
Several surrogate models such as response surface model and radial basis function and Kriging models are developed to speed the optimization design of vehicle body and improve the vehicle crashworthiness. The error analysis is used to investigate the accuracy of different surrogate models. Furthermore, the Kriging model is used to fit the model of B-pillar acceleration and foot well intrusion. The response surface model is used to fit the model of the entire vehicle mass. These models are further used to calculate the acceleration response in B-pillar, foot well intrusion and vehicle mass instead of the finite element model in the optimization design of vehicle crashworthiness. A multi-objective optimization problem is formulated in order to improve vehicle safety performance and keep its light weight. The particle swarm method is used to solve the proposed multi-objective optimization problem.
X