Refine Your Search

Search Results

Viewing 1 to 7 of 7
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Hierarchical Vehicle Active Collision Avoidance Based on Potential Field Method

2021-12-14
2021-01-7038
In this paper, a closed loop path planning and tracking control approach of collision avoidance for autonomous vehicle is proposed. The two-level model predictive control (MPC) is proposed for the path planning and tracking. The upper-level MPC is designed based on the simple vehicle kinematic model to calculate the collision-free trajectory and the potential field method is adopted to evaluate the collision risk and generate the cost function of the optimization problem. The lower-level MPC is the trajectory-tracking controller based on the vehicle dynamics model that calculates the desired control inputs. Finally the control inputs are distributed to steering wheel angle and motor torque via optimal control vectoring algorithm. Test cases are established on the Simulink/CarSim platform to evaluate the performance of the controller.
Technical Paper

The Development of HFE Space Claims for Combat Vehicles

2014-04-01
2014-01-0488
Discuss the basics of posturing and positioning of the full range of occupants necessary to cover the required anthropometric demographics in combat vehicles, both ground and air, since there are similarities to both and that they are both very different than the traditional automotive packaging scenarios. It is based on the Eye Reference Point and the Design Eye Point. Discuss the three Reach Zones: Primary, Secondary and Tertiary. Discuss Vision Zones and potentially ground intercepts. Discuss body clearances, both static and dynamic. Discuss the basic effects of packaging occupants with body armor with respect to SRP's and MSRP's.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Technical Paper

Interior Aircraft Noise Computations due to TBL Excitation using the Energy Finite Element Analysis

2009-05-19
2009-01-2248
The Energy Finite Element Analysis (EFEA) has been developed for evaluating the vibro-acoustic behavior of complex systems. In the past EFEA results have been compared successfully to measured data for Naval, automotive, and aircraft systems. The main objective of this paper is to present information about the process of developing EFEA models for two configurations of a business jet, performing analysis for computing the vibration and the interior noise induced from exterior turbulent boundary layer excitation, and discussing the correlation between test data and simulation results. The structural EFEA model is generated from an existing finite element model used for stress analysis during the aircraft design process. Structural elements used in the finite element model for representing the complete complex aircraft structure become part of the EFEA structural model.
Technical Paper

Detection of Ice on Aircraft Tail Surfaces

2003-06-16
2003-01-2112
A method is presented here that detects aircraft tail surface icing that might normally be unobserved by the flight crew. Such icing can be detected through the action of highly computationally efficient signal processing of existing sensor signals using a so-called failure detection filter (FDF). The FDF creates a unique output signature permitting relatively early detection of tail surface icing. The FDF incorporates a stable state estimator from which the icing signature is created. This estimator is robust to analytical modeling errors or uncertainties, and to process noise (e.g. turbulence). Excellent performance of the method is demonstrated via simulation.
Technical Paper

Recent Aircraft Tire Thermal Studies

1982-02-01
821392
A method has been developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions at the wheel and runway surface. Comparisons with buried thermocouples in actual aircraft tires shows good agreement.
X