Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact Strength Analysis of Body Structure Based on a MBD-FEA Combined Method

2024-04-09
2024-01-2243
In the field of automobile development, sufficient structure strength is the most basic objective to be accomplished. Typically, method of strength analysis could be divided into static strength and dynamic strength. Analysis of static strength constitutes the major part of the development, but the supplement of dynamic strength is also dispensable to assure structural integrity. This paper presents a methodology about analyzing the impact strength of body structure based on a Multi-body Dynamics (MBD) and Finite Element Analysis (FEA) combined method. Firstly, the full vehicle MBD model consists of Curved Regular Grid (CRG) road model, Flexible Ring Tire (FTire) model and dynamic deflection-force bump stop model was built in Adams/Car. Next, Damage Initiation and Evolution Model (DIEM) failure criteria was adopted to describe material failure behavior.
Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

On the Application of Joule-Cycle-Based Waste Heat Recovery to Heavy-Duty Vehicles

2024-04-09
2024-01-2589
Internal combustion engines are becoming ever more efficient as mankind seeks to mitigate the effects of climate change while still maintaining the benefits that a mechanized society has brought to the global economy. As peak values, mass production spark-ignition engines can now achieve approximately 40% brake thermal efficiency and heavy-duty truck compression-ignition engines can approach 50%. While commendable, the unfortunate truth is that the remainder gets emitted as waste heat and is sent to the atmosphere to no useful purpose. Clearly, if one could recover some of this waste heat for beneficial use then this is likely to become important as new means of mitigating fossil CO2 emissions are demanded. A previous study by the authors has identified that the closed Joule cycle (or complications of it beginning to approximate the closed Ericsson cycle) could reasonably be developed to provide a practical means of recovering exhaust heat when applied to a large ship engine.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Numerical Analysis of Different Hydrogen Injector Characteristics in a Constant Volume Chamber

2024-04-09
2024-01-2693
Hydrogen is anticipated to play a pivotal role as a green energy carrier in both heavy industry and transportation. Utilizing hydrogen directly in internal combustion engines (ICE) could offer several advantages compared to alternative technologies. To achieve this objective, a proper understanding of the physical mechanisms and dynamics involved in the injection of this fuel is needed. This study applied high-fidelity computational fluid dynamics (CFD) simulations to describe the flow characteristics of hydrogen injection using hollow- and single- and multi-solid-cone injectors and their effect on mixing quality and characteristics in a constant volume quiescent environment. A reference hollow-cone configuration was used to validate the model. The results indicate that solid-cone configurations achieve greater penetration due to the flow patterns they generate. However, an increase in the number of holes leads to reduced penetration length, projected area, and induced turbulence.
Technical Paper

Investigation of URANS CFD Methods for Supersonic Hydrogen Jets

2024-04-09
2024-01-2687
The urgent need to combat global warming has spurred legislative efforts within the transport sector to transition away from fossil fuels. Hydrogen is increasingly being utilised as a green energy vector, which can aid the decarbonisation of transport, including internal combustion engines. Computational fluid dynamics (CFD) is widely used as a tool to study and optimise combustion systems especially in combination with new fuels like hydrogen. Since the behaviour of the injection event significantly impacts combustion and emissions formation especially in direct injection applications, the accurate modelling of H2 injection is imperative for effective design of hydrogen combustion systems. This work aims to evaluate unsteady Reynolds-Averaged Navier Stokes (URANS) modelling of the advective transport process and related numerical methods.
Technical Paper

Experimental Study of Fuel Mixture Limitations of Ammonia and Gasoline in a Passive Pre-Chamber Engine

2023-09-29
2023-32-0106
Ammonia as a fuel suffers from a high ignition energy requirement making it hard to ignite in stoichiometric mixtures, especially with normal spark plugs. On the other hand, pre-chambers are proven to provide high ignition energy by producing multiple ignition spots in the main chamber. A pre-chamber is usually categorized as “active” if it has a dedicated fueling system, and as “passive” if it depends solely on the air- fuel mixture being introduced from the main chamber and is therefore simpler than the active type. In this study, an SI light-duty engine was tested with a conventional spark plug with fuel mixtures of gasoline and gaseous ammonia (0%, 25%, 50%, 75%, 90%, and 100% NH3). The test was then repeated with a passive pre-chamber under the same operating conditions for comparison. Moreover, the engine exhaust was fitted with a fast response analyzer to measure NOX. The use of the conventional spark plug showed stable combustion throughout the fuel mixture sweep.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Technical Paper

Load Simulation of the Impact Road under Durability and Misuse Conditions

2023-04-11
2023-01-0775
Road load data is an essential input to evaluate vehicle durability and strength performances. Typically, load case of pothole impact constitutes the major part in the development of structural durability. Meanwhile, misuse conditions like driving over a curb are also indispensable scenarios to complement impact strength of vehicle structures. This paper presents a methodology of establishing Multi-body Dynamics (MBD) full vehicle model in Adams/Car to acquire the road load data for use in durability and strength analysis. Furthermore, load level between durability and misuse conditions of the same Impact road was also investigated to explore the impact due to different driving maneuvers.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Optical Diagnostics of Isobaric and Conventional Diesel Combustion in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0418
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve higher thermal efficiency while lowering heat transfer losses and nitrogen oxides (NOx). However, isobaric combustion suffers from higher soot emissions. While the aforementioned trends are well established, there is limited literature about the high-temperature reaction zones, the liquid-phase penetration distance, and the flame tip propagation velocity of isobaric combustion. In the present study, the line-of-sight integrated imaging of Mie-scattering, combustion luminosity, and CH* chemiluminescence were conducted in an optically accessible single-cylinder heavy-duty diesel engine. The engine was equipped with a flat-bowl-shaped optical piston to allow bottom-view imaging of the combustion chamber. The experiments were conducted using n-heptane fuel for CDC and isobaric combustion modes.
Technical Paper

Development of a Reduced TPRF-E (Heptane/Isooctane/Toluene/Ethanol) Gasoline Surrogate Model for Computational Fluid Dynamic Applications in Engine Combustion and Sprays

2022-03-29
2022-01-0407
Investigating combustion characteristics of oxygenated gasoline and gasoline blended ethanol is a subject of recent interest. The non-linearity in the interaction of fuel components in the oxygenated gasoline can be studied by developing chemical kinetics of relevant surrogate of fewer components. This work proposes a new reduced four-component (isooctane, heptane, toluene, and ethanol) oxygenated gasoline surrogate mechanism consisting of 67 species and 325 reactions, applicable for dynamic CFD applications in engine combustion and sprays. The model introduces the addition of eight C1-C3 species into the previous model (Li et al; 2019) followed by extensive tuning of reaction rate constants of C7 - C8 chemistry. The current mechanism delivers excellent prediction capabilities in comprehensive combustion applications with an improved performance in lean conditions.
Technical Paper

A Numerical Study on the Effect of a Pre-Chamber Initiated Turbulent Jet on Main Chamber Combustion

2022-03-29
2022-01-0469
To elucidate the complex characteristics of pre-chamber combustion engines, the interaction of the hot gas jets initiated by an active narrow throated pre-chamber with lean premixed CH4/air in a heavy-duty engine was studied computationally. A twelve-hole KAUST proprietary pre-chamber geometry was investigated using CONVERGE software. The KAUST pre-chamber has an upper conical part with the spark plug, and fuel injector, followed by a straight narrow region called the throat and nozzles connecting the chambers. The simulations were run for an entire cycle, starting at the previous cycle's exhaust valve opening (EVO). The SAGE combustion model was used with the chemistry modeled using a reduced methane oxidation mechanism based on GRI Mech 3.0, which was validated against in-house OH chemiluminescence data from the optical engine experiments.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Using Multiple Ignition Sites and Pressure Sensing Devices to Determine the Effect of Air-Fuel Equivalence Ratio on the Morphology of Knocking Combustion

2022-03-29
2022-01-0433
In spark-ignition combustion, knocking combustion inherently presents an interaction between the main flame front and end gas autoignition. Conventionally, it generates a high amplitude pressure wave traveling across the chamber that can be responsible for reducing the performance of the engine, and can cause heavy damage to engine components. In order to study the phenomenon in a controllable way, experiments were performed on a specialized single-cylinder research engine fitted with a liner equipped with four equi-spaced spark plugs in the side so as to propagate various flame topologies from those locations, and hence achieve more controlled knock events. In addition, six pressure transducers were employed at distinct locations to precisely record details of the autoignition event by monitoring the pressure oscillations, and with them the combustion characteristics and knock intensity.
Technical Paper

Predictive Energy Management for Dual Motor-Driven Electric Vehicles

2022-02-14
2022-01-7006
Developing pure electric powertrains have become an important way to reduce reliance on crude oil in recent years. This paper concerns energy management of dual motor-driven electric vehicles. In order to obtain a predictive energy management strategy with good performance in computation and energy efficiency, we propose a hybrid algorithm that combines model predictive control (MPC) and convex programming to minimize electrical energy use in real time control. First, few changes are occurred in original component models in order to convert the original optimal control problem into convex programming problem. Then convex optimization algorithm is used in the prediction horizon to optimize torque allocation between two electric motors with different size. To verify the effectiveness of the hybrid algorithm, a real city driving cycle is simulated. Furthermore, different predictive horizons are performed to illustrate the robustness and time efficiency of the proposed method.
X