Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Modeling Electric Motors with High Fidelity for Accurate eDrive NVH Simulation

2023-04-11
2023-01-0533
A sophisticated finite element analysis (FEA) method for modeling interior permanent magnet (IPM) electric motors is presented. Based on this method, a coupled structural-acoustic analysis procedure was developed to simulate the motor dyno vibroacoustic responses with improved accuracy and reliability for NVH (noise, vibration, and harshness) behavior prediction over a wide range of torques and frequencies under the operational electromagnetic forces. The proposed motor modeling and analysis method is detail-oriented with high fidelity in modeling the structure and complex material representation. To effectively deal with the motor stator core constructed with large numbers of electromagnetic laminae, the unit-cell approach was employed to derive the core material properties by homogenizing the laminated core as an equivalent orthotropic material. Meanwhile, the windings were modeled by capturing the precise geometry for accuracy improvement.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Assessing Driver Distraction: Enhancements of the ISO 26022 Lane Change Task to Make its Difficulty Adjustable

2023-04-11
2023-01-0791
The Lane Change Task (LCT) provides a simple, scorable simulation of driving, and serves as a primary task in studies of driver distraction. It is widely accepted, but somewhat limited in functionality, a problem this project partially overcomes. In the Lane Change Task, subjects drive along a road with 3 lanes in the same direction. Periodically, signs appear, indicating in which of the 3 lanes the subject should drive, which changes from sign to sign. The software is plug-and-play for a current Windows computer with a Logitech steering/pedal assembly, even though the software was written 18 years ago. For each timestamp in a trial, the software records the steering wheel angle, speed, and x and y coordinates of the subject. A limitation of the LCT is that few characteristics of this useful software can be readily modified as only the executable code is available (on the ISO 26022 website), not the source code.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Journal Article

On the Development of CFD Methodology for Free-Falling Varnish Stream Modeling to Support EV Motor Manufacturing

2023-04-11
2023-01-0158
When manufacturing the stators in EV motors, stator wires are first coated with a layer of resin to provide primary insulation. After winding, impregnating varnish fills all voids within the windings and between the windings and lamination. In addition to electrically insulating the copper wires, another function of the varnish fill is to mechanically secure the copper wires from movement. The process is not complicated in terms of physics. In essence, the mechanics of the varnish flow is the balance of inertia force, viscous force, gravity and surface tension. However, understanding the fluid dynamics of the varnish flow is critical to predicting the quality of the varnish fill, which has a tremendous impact on motor performance. With the advancement of computational fluid dynamics (CFD), the industry can benefit greatly if the varnish trickling process can be tuned, without physical tryouts, to achieve optimal fill.
Technical Paper

Load Simulation of the Impact Road under Durability and Misuse Conditions

2023-04-11
2023-01-0775
Road load data is an essential input to evaluate vehicle durability and strength performances. Typically, load case of pothole impact constitutes the major part in the development of structural durability. Meanwhile, misuse conditions like driving over a curb are also indispensable scenarios to complement impact strength of vehicle structures. This paper presents a methodology of establishing Multi-body Dynamics (MBD) full vehicle model in Adams/Car to acquire the road load data for use in durability and strength analysis. Furthermore, load level between durability and misuse conditions of the same Impact road was also investigated to explore the impact due to different driving maneuvers.
Technical Paper

Graphene: an overview of technology in the electric vehicles of the future

2023-02-10
2022-36-0100
In recent years there has been an increase in the development of vehicles that use alternative energy sources, more specifically electric vehicles, intending to establish the transition from combustion engines, bringing to the automotive chain a reduction in the consumption of fossil fuels. Electrified vehicles help to improve air quality by drastically reducing the emission of harmful gases and contributing to a considerable improvement in sound quality, due to the use of their silent electric motors. A material allied to these alternative technologies is graphene, few layers (usually up to 6) of Carbon atoms arranged in a hexagonal and crystalline form in a two-dimensional plane lattice. Its unique chemical structure allows it to share its exceptional properties with other materials, making it a strong candidate to meet the needs and improve products of the automotive sector.
Research Report

Automated Vehicles, the Driving Brain, and Artificial Intelligence

2022-11-16
EPR2022027
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation.
Research Report

Automated Vehicles: A Human/Machine Co-learning Perspective

2022-04-27
EPR2022009
Automated vehicles (AVs)—and the automated driving systems (ADSs) that enable them—are increasing in prevalence but remain far from ubiquitous. Progress has occurred in spurts, followed by lulls, while the motor transportation system learns to design, deploy, and regulate AVs. Automated Vehicles: A Human/Machine Co-learning Experience focuses on how engineers, regulators, and road users are all learning about a technology that has the potential to transform society. Those engaged in the design of ADSs and AVs may find it useful to consider that the spurts and lulls and stakeholder tussles are a normal part of technology transformations; however, this report will provide suggestions for effective stakeholder engagement. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Wheel Torque-Based Control: Transmission Input Torque Determination and Inertia Compensation

2022-03-29
2022-01-0733
Traditionally, the controls system in production vehicles with automatic transmission interprets the driver’s accelerator pedal position as a demand for transmission input torque. However, with the advent of electrified vehicles, where actuators are located at different positions in the drivetrain, and of autonomous vehicles, which are self-driving, it is more convenient to interpret the demand (either human or virtual) in vehicle acceleration or wheel torque domain. To this end, a Wheel Torque-based longitudinal Control (WTC) framework was developed, wherein demands can be converted accurately between the vehicle acceleration or wheel torque domain and the transmission assembly input torque domain.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

Predictive Energy Management for Dual Motor-Driven Electric Vehicles

2022-02-14
2022-01-7006
Developing pure electric powertrains have become an important way to reduce reliance on crude oil in recent years. This paper concerns energy management of dual motor-driven electric vehicles. In order to obtain a predictive energy management strategy with good performance in computation and energy efficiency, we propose a hybrid algorithm that combines model predictive control (MPC) and convex programming to minimize electrical energy use in real time control. First, few changes are occurred in original component models in order to convert the original optimal control problem into convex programming problem. Then convex optimization algorithm is used in the prediction horizon to optimize torque allocation between two electric motors with different size. To verify the effectiveness of the hybrid algorithm, a real city driving cycle is simulated. Furthermore, different predictive horizons are performed to illustrate the robustness and time efficiency of the proposed method.
Technical Paper

Model in the loop for training purpose

2022-02-04
2021-36-0014
The automotive industry is passing for a big transformation, due to technologies advance. The electrical technologies are also on a good rising curve, calling the attention of the Original Equipment Manufacturer (OEMs). This scenario generates the demand for a faster method to train their new hired engineers, when compared with usual on the job training. Model in the Loop (MiL) consists in one of the real-time embedded systems test phases, which is developed in a computational environment, performing a mathematical modeling of the system, presenting an interface that allows the visualization of its dynamics and the signals involved. Two powerful software in industry that apply MiL are the Matlab and Simulink. A project involving these applications was proposed for a team of new hired engineers, developing models of several vehicle Electronic Control Units (ECUs), with some scope reduction as an example the functional requirements reduction.
Technical Paper

The Evaluation of the Driving Capability for Drivers Based on Vehicle States and Fuzzy-ANP Model

2022-01-31
2022-01-7000
In partly autonomous driving such as level 2 or level 3 automatic driving from SAE international classification, the switching of the driving right between the human driver and the machine plays an important role in the driving process of vehicle [1]. In this paper, the data collected from vehicle states and the driving behavior of drivers is completed via a simulator and self-report questionnaires. A fuzzy analytic network process (Fuzzy-ANP) model is developed to evaluate the driving capability of the drivers in real time from vehicle states due to its direct inherent link to the change of the driving state of drivers Moreover, in this model, the idea of group decision and multi-index fusion is adopted. The questionnaire is required to identify the experimental results from the simulator. The results show that the proposed Fuzzy-ANP model can evaluate the driving capability of the participants in real time accurately.
Technical Paper

Exponential Trajectory Tracking Passivity-Based Control for Permanent-Magnet Synchronous Motors

2021-04-09
2021-01-5047
In this paper, a novel methodology of nonlinear control is used, and a passivity-based control of contractive port-controlled Hamiltonian (PCH) systems is applied to a permanent magnet synchronous motor (PMSM). This methodology, also called “tIDA-PBC” (Trajectory Injection and Damping Assignment—Passivity-Based Control), uses passivity-based control of PCH systems “IDA-PBC” and exploits the properties of contractive Hamiltonian systems, resulting in a closed loop with its contractive system desired dynamics, thus obtaining an exponential trajectory tracking without relying on the error coordinates. In this system, a few steps are proposed in order to divide and modularize the methodology so it can be redesigned or reapplied in other systems by the reader. First, we define the model and set the way to solve the “matching equation.” Then the feasible and reference trajectories are obtained.
Technical Paper

Real-Time Hydro-Mechanical Transmission System Simulations for Model-Guided Assessment of Complex Shift Sequence

2021-04-06
2021-01-0715
Model-guided development of drivetrain control and calibration is a key enabler of robust and efficient vehicle design process. A number of CAE tools are available today for modeling hydro-mechanical systems. Automatic transmission behaviors are well understood to effectively tune the model parameters for targeted applications. Drivetrain models provide physical insight for understanding the effects of component interactions on system behaviors. They are also widely used in HIL/SIL environments to debug control strategies. Nonetheless, it is still a challenge to predict shift quality, especially during a sequence of multiple events, with enough accuracy to support model-guided control design and calibration. The inclusion of hydraulic circuits in simulation models often results in challenges for numerical simulation.
X