Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper

Panel Contribution Study: Results, Correlation and Optimal Bead Pattern for Powertrain Noise Reduction

1997-05-20
971953
To understand how the passenger compartment cavity interacts with the surrounding panels (roof, windshield, dash panel, etc) a numerical panel contribution analysis was performed using FEA and BEA techniques. An experimental panel contribution analysis was conducted by Reiter Automotive Systems. Test results showed good correlation with the simulation results. After gaining some insight into panel contributions for power train noise, an attempt was made to introduce beads in panels to reduce vibration levels. A fully trimmed body structural-acoustic FEA model was used in this analysis. A network of massless beam elements was created in the model. This full structural-acoustic FEA model was then used to determine the optimal location for the beads, using the added beams as optimization variables.
Technical Paper

Advancements in RRIM Fascia Application Provide Cost Competitiveness While Meeting Performance Requirements

1997-02-24
970482
The commercial validation of a optimized RRIM polyurethane substrate with a novel barrier coat for fascia applications is reviewed which creates cost competitiveness to thermoplastic olefins (TPO), without sacrificing performance. Meeting fascia performance requirements with thinner and lighter RRIM materials containing recyclate and the subsequent application of a barrier coat eliminating the traditional primecoat cycle was investigated.
Technical Paper

Static and Dynamic Dent Resistance Performance of Automotive Steel Body Panels

1997-02-24
970158
In recent years, strict weight reduction targets have pushed auto manufacturers to use lighter gauge sheet steels in all areas of the vehicle including exterior body panels. As sheet metal thicknesses are reduced, dentability of body panels becomes of increasing concern. Thus, the goal becomes one of reducing sheet metal thickness while maintaining acceptable dent resistance. Most prior work in this area has focused on quasi-static loading conditions. In this study, both quasi-static and dynamic dent tests are evaluated. Fully assembled doors made from mild, medium strength bake hardenable and non-bake hardenable steels are examined. The quasi-static dent test is run at a test speed of 0.1 m/minute while the dynamic dent test is run at a test speed of 26.8 m/minute. Dynamic dent testing is of interest because it more closely approximates real life denting conditions such as in-plant handling and transit damage, and parking lot damage from car door and shopping cart impact.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Brake and Clutch Pedal System Optimization Using Design for Manufacture and Assembly

1992-02-01
920774
This paper describes the application of the Design for Manufacture and Assembly (DFMA) method at Chrysler. Attention is focused on the development of the clutch and brake pedal and bracketry system of the PL project in the Small Car Platform. The Chrysler DFMA procedure including competitive evaluation and value engineering was utilized during the initial design phase involving product concept development from the original functional and manufacturing requirements. After the first laboratory tests, a number of key design and manufacturing concerns surfaced and led to a second cycle of DFMA analysis. The procedure permits major design functions and manufacturing and assembly process issues and criteria to be incorporated in the initial design stages.
Technical Paper

A Comparison of Aluminum, Sheet Molding Compound and Steel for Hoods

1992-02-01
920242
A unique opportunity arose to make a direct comparison of aluminum, sheet molding compound (SMC) and steel using a common hood design. In considering all possible material combinations of inner and outer panels, it was discovered that some of the combinations were incompatible due to material properties. Only the compatible material combinations were considered. Three different joining techniques - welding, bonding and bonded hem flanging - were evaluated. The cost, weight and structural performance of the chosen hood material combinations were established. Areas of further development were identified, including design optimization for specific material combinations.
Technical Paper

Laboratory Test Device for the Optimization of Seat Belt System Component Design and Installation Geometry

1986-02-24
860056
A laboratory test fixture was designed and built to simulate seat belt assembly installations. The anchor positions of the retractor and pillar loop, and the engaged or free-hanging position of the latchplate can be varied to either simulate a vehicle's seat belt system geometry, or to optimize a proposed geometry. The required retraction forces for a simulated geometry are determined by replacing the retractor action with a motorized load transducer that measures the force required to stow the latchplate. The pillar loop, webbing, latchplate, and their relative positions can be varied until the minimum retraction force that successfully stores the latchplate is determined. The geometry of such a condition can then be applied to future designs of seat belt assembly components and their anchor positions.
Technical Paper

Optimizing Press Performance for Difficult Automotive Stampings

1986-02-01
860440
A method has been employed in the stamping facility to reduce scrap by correlating observations from the press shop with laboratory test results. This paper illustrates the successful use of this method for reducing formability failures. Correlation of observed coating behavior with laboratory adherence tests is also discussed.
Technical Paper

Chrysler's New Engine Performance Dynamometer Facility

1981-02-01
810286
A new 10 cell engine dynamometer complex, (Fig. 1) which provides optimized testing and development capacity for new lines of automotive power plants for the 1980's and beyond, has been built at Chrysler's Engineering Center. This modern facility combines “state of-the art” instrumentation for control, data gathering, and data analysis with new operating concepts which together allow for high levels of accuracy, repeatability, and productivity previously not attainable in the area of engine testing and development.
X